
Vers l’efficacité et la sécurité du
chiffrement homomorphe et du

cloud computing

Thèse de doctorat de l'Université Paris-Saclay
préparée à l’Université de Versailles Saint-Quentin-en-Yvelines

École doctorale n°580 Sciences et Technologies de
l'Information et de la Communication (STIC)

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Versailles, le 17 Mai 2018, par

 Ilaria Chillotti

Composition du Jury :

M. Jean-Sébastien CORON
Professeur assistent, Université de Luxembourg Examinateur

Mme Caroline FONTAINE
Chargé de recherche, IMT Atlantique Examinatrice

M. Nicolas GAMA
Maître de conférences, Université de Versailles
Saint-Quentin-en-Yvelines & Inpher Co-encadrant

M. Louis GOUBIN
Professeur, Université de Versailles Saint-Quentin-en-Yvelines Directeur de thèse

M. Daniele MICCIANCIO
Professeur, University of California, San Diego Rapporteur

M. Pascal PAILLIER
CEO et senior security expert, CryptoExperts Invité

M. Renaud SIRDEY
Directeur de recherche, CEA LIST Président du Jury

M. Damien STEHLÉ
Professeur, École Normale Supérieure de Lyon Rapporteur

Mme Vanessa VITSE
Maître de conférences, Institut Fourier Grenoble Examinatrice

NNT : 2018SACLV020

Titre : Vers l'e�cacité et la sécurité du chi�rement homomorphe et du

cloud computing

Mots clefs : chi�rement homomorphe, cloud computing, learning with errors, cryptologie, vote
électronique, calcul multi-partite.

Résumé : Cette thèse étudie le chi�rement
homomorphe, nouvelle famille de schémas de
chi�rement qui permet de faire des calculs sur
les messages chi�rés. Le chi�rement homomor-
phe compte un grand nombre d'applications
pratiques : vote électronique, calculs sur des
données sensibles, cloud computing, etc.. Dans
la thèse, on propose un nouveau schéma de
chi�rement homomorphe, basé sur la construc-
tion GSW et ses variantes, appelé TFHE.
TFHE améliore soit la technique de bootstrap-
ping, utilisée pour rafraîchir les chi�rés bruités,
soit les calculs homomorphes non bootstrappés,

en proposant des nouvelles techniques de pack-
ing des données et d'évaluation via automates
pondérés. Le schéma a été implémenté pendant
la thèse et il est disponible en open source. La
thèse présente aussi des travaux complémen-
taires : la construction théorique d'un schéma
de vote électronique post-quantique basé sur le
chi�rement homomorphe, l'analyse de sécurité
du chi�rement homomorphe dans le cas d'une
implémentation dans le cloud, et une nouvelle
solution pour le calcul sécurisé basée sur le cal-
cul multi-partite.

Title : Towards e�cient and secure Fully Homomorphic Encryption and

cloud computing

Keywords : fully homomorphic encryption, cloud computing, learning with errors, cryptology,
electronic voting, multi-party computation.

Abstract : This thesis studies fully homomor-
phic encryption (FHE), a new family of encryp-
tion schemes that allows to perform computa-
tions on encrypted data. FHE has a large num-
ber of applications: electronic voting, computa-
tions on sensitive data, cloud computing, etc..
In this thesis, we propose a new homomorphic
scheme based on the GSW construction and its
variants, that we call TFHE. TFHE improves
both the bootstrapping technique, used to re-
fresh noisy ciphertexts, and the homomorphic
computations without bootstrapping, by pre-

senting new packing techniques and an evalu-
ation via weighted automata. The scheme has
been implemented during the thesis and is avail-
able in open source. Furthermore, this thesis
presents additional work: the theoretical con-
struction of a post-quantum electronic-voting
scheme based on homomorphic encryption, a
security analysis of homomorphic encryption in
a practical cloud implementation scenario, and
a new solution for secure computing based on
multi-party computation.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Acknowledgements

T.b.a.

Acknowledgements

Contents

1 Introduction 1

2 State of the art on Homomorphic Encryption 7

2.1 Gentry and DGHV: the �rst generation 10
2.1.1 Approximate-GCD and the DGHV scheme 11
2.1.2 Gentry's bootstrapping . 13

2.2 Learning with errors: the second and third generation 14
2.2.1 Second Generation: BGV . 17
2.2.2 Third Generation: GSW . 19

3 LWE and GSW over the Torus 23

3.1 Preliminary notions . 23
3.1.1 Modules . 24
3.1.2 Probability distributions . 25
3.1.3 Distance and Norms . 27

3.2 The Learning With Errors problem revisited 27
3.2.1 TLWE . 30
3.2.2 TGSW . 34
3.2.3 Products . 38
3.2.4 CMux gate . 41

4 TFHE: building blocks and leveled constructions 47

4.1 Building blocks for TFHE . 47
4.1.1 Key Switching revisited . 48
4.1.2 Sample Extraction. 52
4.1.3 Blind Rotate . 52

4.2 Leveled constructions in TFHE . 53
4.2.1 Arbitrary functions and Look-Up Tables 56
4.2.2 Deterministic automata . 62
4.2.3 Bit Sequence Representation 71

CONTENTS

5 Bootstrapped TFHE 81
5.1 Gate bootstrapping (TLWE-to-TLWE) 82
5.2 Circuit bootstrapping (TLWE-to-TRGSW) 89

6 Security estimates, practical results and implementation 95
6.1 Semantic security . 95

6.1.1 Security analysis . 97
6.2 TFHE: Fast Fully Homomorphic Encryption over the Torus 101
6.3 Concrete Parameters . 105

6.3.1 Gate bootstrapping Parameters. 106
6.3.2 Circuit Bootstrapping . 109

6.4 Time comparison between di�erent techniques 110
6.4.1 Comparison between TFHE and the other schemes 116

Conclusion 117

Appendices 121

A Cloud security of homomorphic encryption 123
A.1 Safe-errors and reaction attacks in the cloud 127

A.1.1 Attacking the data . 128
A.1.2 Attacking the algorithm . 129

A.2 Attacking the bootstrapping principle 130
A.2.1 Trans-ciphering . 131
A.2.2 Bootstrapping . 131

A.3 Countermeasures . 132

B Application: a homomorphic LWE based e-voting scheme 139
B.1 E-voting scheme . 143
B.2 More homomorphic building blocks 145

B.2.1 Publicly veri�able decryption for LWE 145
B.2.2 Concatenated TLWE with distributed decryption 147

B.3 Detailed Description of our E-voting Protocol 148
B.3.1 Setup phase . 149
B.3.2 Voting phase . 150
B.3.3 Tallying phase . 152

B.4 Practical estimates . 152

C A di�erent cloud solution: MPC 155
C.1 Overview of the work . 155
C.2 Secret sharing and MPC: a short background 159

C.2.1 Secret sharing and masking 159
C.2.2 Arithmetic with secret shares via masking 159

CONTENTS

C.2.3 MPC evaluation of real-valued continuous functions 160
C.2.4 Full threshold honest-but-curious protocol 161

C.3 Statistical Masking and Secret Share Reduction 161
C.3.1 Fixed point, �oating point and interval precision 162
C.3.2 Floating point representation 162
C.3.3 Secret share reduction algorithm 163

C.4 Fourier Approximation . 164
C.4.1 Evaluation of trigonometric polynomials 164
C.4.2 Approximating the sigmoid function 165

C.5 Honest but curious model . 166
C.6 Application to Logistic Regression . 169

C.6.1 Implementation and Experimental Results 170

Notations 173

List of publications 177

Bibliography 180

Chapter 1

Introduction

We live in the era of the cloud, an ambiguous entity able of storing and processing
our data, accessible from everywhere in the world via internet connection, that
materializes in a huge number of servers located somewhere on the planet. The
cloud is incredibly practical: it is su�cient to have a portable device to access
its agenda, photos, documents, contacts, emails, etc. Several cloud services are
proposed by di�erent companies and most of the time their products are �free�. It is
su�cient to create an account with a login and a password (and sometimes answer
to a bunch of questions) and one can access all these services.

Of course, nothing comes for free, and the cloud is not an exception. Even
if our data seems protected by a password that only we possess, the cloud is
the real �nal recipient of all the information. Accessing this information gives
the cloud a huge amount of very valuable details about ourselves. The cloud
knows our tastes and our needs, and it can sell all this information to third par-
ties (and gain a lot). The risk is that we might �nally become the product to exploit.

In this scenario, it becomes important to �nd e�cient solutions to protect private
data, without losing at the same time the bene�ts brought by the cloud. A valuable
solution in this context comes from fully homomorphic encryption.

Fully homomorphic encryption.

When it comes to protect data, cryptology is surely a good answer.
Already the ancient Greeks, with the scytale, and Romans, with Caesar's cipher,
made use of cryptology, and after them, kings and queens, intellectuals and mainly
armies protected their communications by using a huge variety of systems, more
or less resistant. Until the 70's, all the cryptosystems were symmetric: the sender
and the receiver share the same secret key and they use it to encrypt and decrypt
messages. Asymmetric encryption was a real breakthrough. The recipient owns
a pair of keys, one private that he keeps for himself, and one public known by

1

Chapter 1. Introduction

everyone. The two keys are related by mathematical relations, and the knowledge
of the public key should not allow the adversary to retrieve the secret. Anyone who
has the public key can send messages to the owner of the keys, but only their owner
is able to decrypt those messages. The �rst asymmetric protocols were proposed by
Di�e and Hellman in 1976 [DH76], Rivest, Shamir and Adleman in 1978 [RSA78]
and ElGamal in 1985 [ElG85]. Nowadays, asymmetric protocols are mainly used
to produce signatures or exchange symmetric keys. After the advent of public key
constructions, cryptology stopped being used exclusively in the military context
and became a tool shared (not always consciously) by all connected people on the
earth.

In the cloud context, we can use standard cryptology to protect the data stored on
the servers online. But if we want to search, modify or operate on such data, we
must download it, decrypt it, transform it, encrypt it again and re-upload it on the
cloud. Even if classical encryption solves the privacy problem, it is not enough.

In 1978, Rivest, Adleman and Dertouzos [RAD78] introduced a new concept of
encryption schemes, called by them privacy homomorphisms and known nowadays
as homomorphic encryption schemes, able to perform computations on encrypted
data. However, they did not have an actual instantiation, and no solution was found
for almost 30 years after this publication. To be precise, there existed schemes
able to perform computations on encrypted data, but the allowed operations were
limited. Indeed, only one kind of operation could be performed, or just a limited
number of computations. The �rst valid fully homomorphic encryption scheme, able
to potentially evaluate any function on encrypted data, was proposed in 2009 by
Gentry [Gen09]. His scheme was impractical, but he proved that fully homomorphic
encryption was possible. After this �rst construction, several schemes were proposed.

Fully homomorphic schemes have an enormous amount of applications, and one of
them is cloud computing. In fact, not only we can encrypt our data on the cloud,
but we can also ask the cloud to operate on this data: with fully homomorphic en-
cryption the cloud is not able to extract any information and, sometimes, neither to
understand which kind of operation is performed. With this new technology applied
on the cloud, we may take advantage of the storage space and the computational
power of the cloud, all by keeping our data safe and secret.

Besides cloud computing, homomorphic encryption can be used for electronic voting,
for multi-party computation, to make operations on sensitive data (in the medical
and �nancial domain as instance), for biometrics recognition, etc.

This large range of applications has made homomorphic encryption one of the most
interesting subjects of study in cryptology of the last few years and, in the particular,
the main subject of this PhD thesis.

2

This thesis.

At this point, new questions arise. Is it possible to make fully homomorphic en-
cryption practical and usable for real world applications? Is it really safe to use
fully homomorphic encryption in the cloud context? Are there any other options to
perform computations on encrypted data other than homomorphic encryption?
It is in this context that this thesis started, and these are all the questions we
aimed at solving with the work done during the past three years. This manuscript
is a summary of the answers found, as well as all the new questions that arose in
the attempt to �nd these solutions.

We start this manuscript with a state of the art on homomorphic encryption (Chap-
ter 2), that summarizes the main solutions proposed in the literature. Chapters 3,
4 and 5 explain our improvements on homomorphic encryption, and present in de-
tail our construction, called TFHE. These chapters include the results we published
in [CGGI16a], [CGGI17a], and submitted as a long version to the Journal of Cryp-
tology last year. With TFHE, we contribute to make homomorphic encryption more
practical. Our results in [CGGI16b] won the Best Paper Award to the conference
Asiacrypt 2016. However, there is a long road ahead before we can really a�rm that
homomorphic encryption is e�cient for real world applications. The �rst part of
Chapter 6 analyzes the semantic security of TFHE (as in [CGGI16a] and [CGGI17a])
and gives the guidelines for the choice of the parameters for our scheme, a di�cult
task in the homomorphic encryption context. The need, the wish and the curiosity
to see our construction used in practice pushed us to implement it and test it for
simple functions. This implementation (today a C/C++ open source library) is pub-
licly available on GitHub [CGGI16d]. We describe our library, the tests we did and
the results we obtained in the second part of Chapter 6. Then, a short conclusion
summarizes the open questions and possible future works.
The manuscript includes three appendices, presenting some additional works. Ap-
pendix A is dedicated to the security of general homomorphic encryption schemes
in the cloud context. This part summarizes the results we proposed in [CGG16]. In
Appendix B, we present a more complex application of homomorphic encryption:
an electronic voting scheme. We proposed this scheme in [CGGI16b]. Finally,
Appendix C describes a recent result in multi-party computation, a di�erent
solution for secure computing, published in [BCG+18].

The chronological order in which the results were found is a bit di�erent. When this
thesis started, the �rst question we tried to answer was the one about the security
of homomorphic encryption in the cloud context. This was a generic question. Just
after that we focused on a speci�c family of homomorphic encryption schemes. We
decided to analyze one of the most interesting fully homomorphic encryption schemes
at the moment, i.e. the one proposed by Ducas and Micciancio in [DM15]. To better
understand their construction and to better express its potential, we started by using

3

Chapter 1. Introduction

their scheme to produce a real world application. We were particularly interested in
electronic voting and we designed the �rst post quantum electronic voting scheme.
Our design was mainly theoretical and we wanted to see if it would run in practice.
So we studied the scheme by [DM15] in detail and we tried to improve it. This work
led to the design of TFHE. In the end we did not implement the electronic voting
scheme, but it would be interesting to see what it looks like with the new TFHE
improvements. The multi-party computation project came later, as a valuable secure
cloud computing alternative.

What we learned.

Now that this thesis comes to its end, it is time to take stock and see if we were
able to give proper answers to the questions we had at the beginning. The an-
swers, that we summarize here, seem quite promising for the future of FHE schemes.

Fully homomorphic encryption is surely a powerful tool, and it is a continuous
surprise. When Rivest, Adleman and Dertouzos [RAD78] �rst had the idea, such
schemes seemed just utopic. In 2009, when Gentry showed the �rst construction, the
doubts on the existence were replaced by the doubts on the practicality, since mem-
ory requirements and execution timings of Gentry's construction were unachievable
(initially, none a lifetime was su�cient to compute a bootstrapping). After that,
new constructions demonstrated that unachievable may become achievable, even if
not so practical (one bootstrapping in a few minutes). The work we made in the last
three years and the results that other researchers produced in this domain proved
that homomorphic encryption may be not so impractical, and can be used (at least)
for small applications (one bootstrapping is in the order of the milliseconds). In less
than 10 years, the con�dence on this new technology has increased enormously, and
all these results made us believe that soon homomorphic encryption could really
be used for real world applications with great results. Furthermore, the schemes
proposed are often post-quantum secure, which contributes to add a huge interest
in them.

Of course, cloud computing could be one of the real world applications. The
potential of homomorphic encryption on the cloud is huge, as well as is the danger.
We should imagine the cloud as an enormous arena: our most sensitive data are
put in the center of the arena and a huge audience can look at them from the
bleachers. The audience may be good, honest but curious, or even malicious. The
proven semantic security of homomorphic encryption let us think that the schemes
are safe, but it is known that the constructions are malleable. The malleability (i.e.
the possibility to transform a ciphertext into another valid ciphertext, and then
encrypt a message related to the original one) is the main strength of homomorphic
encryption, but it was in general considered as a weakness in cryptology. Many
attacks have been made on other cryptosystems because of this vulnerability: the

4

most famous are fault attacks. Homomorphic encryption schemes are not immune,
and a cloud employment may give adversaries the possibility to retrieve many
bits of information. There exist countermeasures to this kind of attacks (even if
sometimes too expensive to set up), and some small precautions may prevent the
loss of information. It is fundamental to be aware of these threats, in particular in
a context such as that of the cloud.

It may also be interesting to search for other solutions for secure and private com-
putations. There are already multiple examples, such as multi-party computation,
obfuscation, functional encryption, multilinear maps, etc. Many of them may be
realized by employing fully homomorphic encryption, but their cost would be too
expensive. Better solutions have already been proposed and the research on these
domains continues with the same commitment as in the homomorphic encryption
domain. We started to investigate only the multi-party computation domain and it
would be interesting to go deeper on the subject.
There is not an ideal solution for secure computing, all of the solutions have pros
and cons, and a large variety of applications for what they are better suited than
the other solutions. Having good constructions for all of these domains would make
secure computing more feasible and usable from a larger number of people.

This manuscript is the summary of all the results obtained during these last three
years of work. We try to clarify all the complicated and more technical points by
using a lot of images and schemes. We guide the reader on this path by regularly
summarizing what we did and what remains to do.
We hope that the reading of this manuscript is as pleasant as possible. We hope
that the �story� we tell could lighten the doubts on the functionality and the great
potential of homomorphic encryption and cloud computing. We �nally hope that the
reading will induce re�ection, and maybe become the starting point for new ideas,
as well as all the cited references did for us.

5

Chapter 1. Introduction

6

Chapter 2

State of the art on Homomorphic

Encryption

By homomorphic encryption, we mean the family of encryption schemes being able
to perform homomorphic operations on ciphertexts, without decrypting them. The
�rst time someone introduced such a notion goes back to 1978, when Rivest, Adleman
and Dertouzos [RAD78] described the privacy homomorphisms.
An homomorphic encryption scheme, as traditional encryption schemes, has a key
generation, an encryption and a decryption algorithm, and it has an additional
algorithm called evaluation.

• Key generation: given a security parameter λ, the keys (secret and, if nec-
essary, public) are generated.

• Decryption: given a valid message spaceM and a valid ciphertext space C,
the decryption algorithm takes in input a ciphertext c ∈ C and a secret key,
and outputs a message m ∈M.

• Encryption: the encryption algorithm takes in input a message m ∈M and
a secret (or public, depending on the scheme) key and outputs a ciphertext
c ∈ C. Encryption is randomized, which means that the same message can be
encrypted in di�erent ways by using the same key. The correctness condition
imposes that every ciphertext decrypts in the original message.

• Evaluation: the evaluation algorithm is used to evaluate (homomorphically)
functions or Boolean circuits over ciphertexts. It basically takes in input the
description of a function φ :Mk →M (with k > 1 being an integer) and a list
of k ciphertexts c1, . . . , ck ∈ C corresponding to messages m1, . . . ,mk ∈M re-
spectively, and outputs a new ciphertext c ∈ C that decrypts in φ(m1, . . . ,mk).

Some schemes possess homomorphic properties, but they can perform just additions,
or just multiplications. Known examples are RSA [RSA78], ElGamal [ElG85] and

7

Chapter 2. State of the art on Homomorphic Encryption

Paillier's [Pai99] cryptosystems. Some other schemes are homomorphic with respect
to both operations, but they are able to perform these operations only a limited
number of times. An example is the scheme of Boneh, Goh and Nissim [BGN05],
on which it is possible to do unlimited additions with a unique �nal multiplica-
tion (based on elliptic curves and pairings). Such schemes are generally known as
Somewhat (or Partially) Homomorphic.
Finding a scheme able to evaluate any function, and not just a limited set of
operations, has not been an easy task. The �rst solution has been proposed by
Gentry in 2009 [Gen09]. His scheme is based on ideal lattices and it is (potentially)
able to evaluate any function. The scheme proposed by Gentry uses noisy cipher-
texts, i.e. ciphertexts containing a certain amount of noise for security reasons.
The noise grows after every evaluation: if this growth is not controlled, it can lead
to incorrect decryption. In order to deal with this problem, Gentry introduced a
technique, called bootstrapping, that is used to reduce periodically the noise and
make the scheme Fully Homomorphic. It consists in evaluating the decryption
circuit homomorphically by using an encryption of the secret key. More details are
given in the next section.

Gentry's scheme is not used today because it is impractical and broken, but the
bootstrapping technique is largely employed. The most promising schemes rely on
two lattice-based problems:

• Approximate GCD problem: described in 2001 by Howgrave-
Graham [HG01]. Some schemes based on this problem are [vDGHV10],
[CMNT11], [CNT12], [CLT14], [CS15].

• Learning With Errors (LWE) problem: described in 2005 by Regev [Reg05],
and its ring variants, described in 2009 by Stehlé, Steinfeld, Tanaka and Xa-
gawa [SSTX09] and in 2010 by Lyubashevsky, Peikert and Regev [LPR10].
Two principal families of homomorphic encryption schemes are based on the
LWE problem: the BGV family [BGV12], [BV11a], [BV11b], [BV14a], [Bra12],
[FV12], [BV14b], and the GSW family [GSW13], [AP14], [BR15], [DM15],
[CGGI16a], [CGGI17a].

A reduction from LWE to Approximate-GCD is described in [CS15]. More details on
these schemes are given in next sections.
Unfortunately, bootstrapping still is the most expensive part of the entire homomor-
phic evaluations. It is for that reason that a lot of the work done in the homomorphic
encryption domain aims at improving this technique. Some other works, instead, try
to avoid bootstrapping. In fact, for some applications, the function to be evaluated
is known in advance. In these cases, it is generally possible to just adapt the param-
eters of the scheme in order to do the evaluation without the needing of bootstrap.
Of course, the size of the parameters is proportional to the depth of the function.
Thus, we distinguish two cases:

8

• Fully Homomorphic Encryption: once the parameters are �xed, it is pos-
sible to correctly evaluate any function;

• Leveled Homomorphic Encryption: once the function is �xed, it is possible
to �nd a set of parameters for the scheme in order to correctly evaluate the
function.

In all the existing homomorphic schemes, the evaluation of an homomorphic opera-
tion increases the noise in ciphertexts. Generally, the multiplications are more costly
than additions in terms of noise. When it comes to the evaluation of a function in
leveled mode, it is important to know its multiplicative depth to predict how big
have to be the parameters to support the evaluation. The depth often corresponds
to the number of levels that can be supported by the chosen parameter set.
The main scheme presented in this manuscript gives a di�erent interpretation of the
levels and does not always measure the depth of a circuit/function as depending on
the multiplicative depth. More details about this subject are given in Chapters 4
and 5.

In the rest of the manuscript, we use the notations SHE, FHE and LHE for Some-
what, Fully and Leveled homomorphic encryption respectively, and we often abbre-
viate homomorphic encryption by HE.

Symmetric or asymmetric. Homomorphic encryption schemes can be symmet-
ric or asymmetric. In cryptology, it has been a huge challenge to �nd asymmetric
schemes (�rst public key solutions only appeared in the seventies). Obtaining a sym-
metric encryption scheme from an asymmetric construction is easy: just keep all the
keys secret. The inverse is nearly impossible in general.
With homomorphic encryption schemes, this is quite simple. In fact, as shown
in [Rot10], a binary symmetric key homomorphic encryption scheme can be made
asymmetric by publishing a list of fresh1 encryptions of 0 and 1. If the scheme al-
lows trivial ciphertexts or it supports the evaluation of constant functions, then it
is su�cient to publish just a list of fresh encryptions of 0.
The main scheme described in this manuscript is presented in its symmetric version.
In Appendix B, we present some applications where a public key version is needed.

Applications. Homomorphic encryption is particularly interesting for the enor-
mous quantity of practical applications it o�ers. We propose just a few examples.

1. Electronic voting: considered as the electronic solution that will replace
paper voting, it is one of the most interesting applications of HE. Several
solutions have already been proposed. The ballots (i.e. the �vote containers�

1Shortly, a fresh ciphertext is a ciphertext that has just been generated and does not have
already been used in a homomorphic evaluation.

9

Chapter 2. State of the art on Homomorphic Encryption

of every voter) can be encrypted and summed homomorphically in order to
compute the �nal result of an election. A system of trusted authorities reveals
the decryption of the �nal result. In Appendix B we give more details about
a homomorphic based e-voting scheme.

2. Multi-party computation (MPC): consists in a distributed computation
between multiple participants, not trusting each other. Everyone owns a part
of the data or the function to be computed. The goal is that every participant
at the end is able to compute the result (or a share of the result) without
knowing the entire set of data. FHE is one of the possible solutions to this
problem.

3. Outsourced computations: consists in asking to a third entity to perform
computations on personal data. In the era of the cloud, the privacy of the data
uploaded on public servers is a crucial subject. If we want to hide personal
information, encryption becomes necessary. And as homomorphic encryption
allows to perform computations on ciphertexts, the clients can take advantage
of the storing and computational power of cloud servers, while maintaining
their data private.

4. Computations on sensitive data: FHE found a large set of applications
when sensitive data have to be treated. Examples are data coming from med-
ical centers, hospitals, biometrics data or even �nancial data. With FHE it
is possible to compute statistical balances, do researches, compute a match,
study a particular phenomenon, while keeping the privacy of patients or clients
safe at the same time.

5. Circuit privacy: not only the data, but also the function to be evaluated can
be kept secret thanks to FHE. For instance, it is possible to hide the function
by evaluating universal circuits or encrypted look-up tables. This may be an
interesting property when a secret algorithm has to be evaluated, as instance
in the �nancial domain. Even if the approach is completely di�erent, this may
be seen as a sort of obfuscation (make the program incomprehensible while
keeping the functionality), or as a kind of two-party computation.

2.1 Gentry and DGHV: the �rst generation

The �rst FHE scheme proposed by Gentry [Gen09] and the solutions based on the
approximate-GCD problem, in particular DGHV [vDGHV10], can be considered
part of the �rst generation of homomorphic schemes.
The scheme proposed by Gentry is based on ideal lattices. In this section, we do
not describe his scheme, but the bootstrapping idea that he introduced for the
�rst time and that is largely used in FHE schemes. To better understand why the

10

2.1 Gentry and DGHV: the �rst generation

bootstrapping is so important, we start by describing the approximate-GCD problem
and the DGHV scheme, which is the easiest HE existing scheme.

2.1.1 Approximate-GCD and the DGHV scheme

The approximate-GCD (approximate great common divisor) problem has been de-
scribed in 2001 by Howgrave-Graham [HG01].
Let p be an odd positive integer. Given a list x1, . . . , xn of integers2 of the form

xi = p · qi + ri,

with qi random integers (possibly greater than p) and ri small random integers
(noises), for i ∈ J1, nK. The approximate-GCD problem consists in recovering p
(search problem). If the noises are equal to 0, the problem is trivial: the GCD can
be easily found via Euclid's algorithm. But in the presence of noise, it becomes
harder to �nd the value of p.
To understand why, we can see the approximate-GCD problem as a graduate rule.
The long lines in the rule represent the exact multiples of p. If we want to take
samples for the approximate-GCD distribution, we draw (red) lines near the long
lines in the rule. Instead, if we take uniformly random samples (in green), they
appear in random places on the rule. If someone asks to distinguish which one,
between the green or the red lines, has been sampled from the approximate-GCD
distribution, the answer is immediate (Figure 2.1).

Figure 2.1: The approximate-GCD distribution is represented by the rule: red lines
are samples from this distribution, while green lines are sampled uniformly at ran-
dom.

But if the rule disappears (i.e. we do not know the secret), it is hard to distinguish
(decisional problem) between the samples from the distribution and the random
samples (Figure 2.2).

The DGHV scheme

In 2010, van Dijk, Gentry, Halevi and Vaikuntanathan, proposed in [vDGHV10]
a scheme based on the approximate-GCD problem, that we call DGHV, after the
authors names. The scheme is very easy to describe and it is homomorphic with
respect to both addition and multiplication.

2In [HG01] n = 2, but the problem can be generalized for arbitrarily many samples.

11

Chapter 2. State of the art on Homomorphic Encryption

Figure 2.2: The approximate-GCD distribution is hidden: red lines are samples
from this distribution, while green lines are taken uniformly at random. They all
appear as random samples.

• Key generation: let λ be a �xed security parameter. The secret key is chosen
as an odd random η-bit integer p (with η = Õ(λ2)).

• Encryption: the message spaceM is the binary space B. To encrypt a mes-
sage µ ∈ B, one choses a random integer q ∈ J0, 2γ/pJ (with γ = Õ(λ5)) and
a small random integer r ∈K− 2ρ, 2ρJ (with ρ = λ). The encryption of µ is

c = p · q + 2 · r + µ.

• Decryption: the decryption consists in reducing the ciphertext modulo p (in
the zero centered interval), then modulo 2. Without knowing p, to retrieve the
message m is like trying to �nd a needle in a haystack, without knowing if the
needle is even there or not.

• Evaluation: Let's take two encryptions c1, c2 of two messages m1,m2 ∈ B
respectively. If we add or multiply c1 and c2, we obtain two new ciphertexts
encrypting the sum or the product of m1 and m2:

c+ = c1 + c2 = p · (q1 + q2) + 2 · (r1 + r2) + (m1 +m2) (2.1)

c× = c1 · c2 = p · (q1q2 + 2q1r2 + 2q2r1 + q1m2 + q2m1)

+ 2 · (2r1r2 + r1m2 + r2m1) + (m1m2).
(2.2)

Observe the noise part (Equations (2.1) and (2.2)) produced during the evaluation
phase, i.e. the quantity multiplied by 2: it has grown in both cases. During the
evaluation of the addition (Equation (2.1)) it has doubled. During the evaluation
of the multiplication (Equation (2.2)) it has approximately doubled the square of
the original values. The operations remain correct till the noise part is smaller than
p/2, otherwise decryption may give incorrect results. It is for that reason that a
noise reduction technique is needed (or bigger parameters in order to support a
leveled evaluation).

Improvements. This scheme has been improved in 2011 by Coron, Mandal, Nac-
cache and Tibouchi [CMNT11], who reduce the public key size and describe the
�rst implementation of the scheme. In 2012 Coron, Naccache and Tibouchi [CNT12]

12

2.1 Gentry and DGHV: the �rst generation

propose a key compression technique, by keeping the same level of security, and by
showing how to adapt [BGV12] techniques, described in next sections, in the DGHV
context. In 2013, Cheon et al. [CCK+13] show how to do batching, i.e. process several
messages at the same time in an evaluation by packing them in a single ciphertext.
The scheme has been generalized for a non-binary message space in 2015 by Nuida
and Kurosawa [NK15]. They show that it is possible to encrypt messages in Z/PZ
for any P prime integer. Further improvements are presented in [CS15]. DGHV can
be used in both leveled or bootstrapped mode.

2.1.2 Gentry's bootstrapping

Bootstrapping is the technique introduced by Gentry [Gen09] in order to reduce the
noise in ciphertexts. In fact, after evaluating operations homomorphically, the noise
increases (as shown for instance in the previous section) and, if not controlled, it
could cause some decryption problems.
Imagine the practical scenario of a client storing his data on a cloud server, and
asking the cloud to perform some computations on these data. In order to hide
the information, the client encrypts his data with homomorphic encryption and
asks the cloud to perform the computations on the ciphertexts. This is possible
thanks to the properties of HE schemes. But if during the computations the noise
grows too much, the result of the evaluation can become incorrect. The cloud could
of course periodically send the ciphertexts to the client, this latter could decrypt
and (freshly) re-encrypt them to let the cloud continue the computations correctly.
Nevertheless, this is absolutely impractical. If the cloud was able to refresh the
noisy ciphertexts itself without the constant intervention of the client, it would be
much better.

Bootstrapping solves this problem. The easiest and trivial way to suppress the noise
is to decrypt the ciphertext. But the client cannot reveal his secret key. Instead, he
gives to the cloud an encryption of his secret key and asks him to homomorphically
decrypt the noisy ciphertexts periodically.
Figure 2.3 illustrates the original bootstrapping idea. We start with an initial noisy
ciphertext encrypting the message µ with a secret key sk1 (straight line boxes).
In order to reduce the noise, we homomorphically evaluate the decryption circuit.
To do that, we add a supplementary layer of encryption (dashed line boxes), by
using the public key corresponding to the secret sk2. We also provide an encryption
of the �rst secret key sk1 with respect to the secret key of the second encryption
scheme sk2, and we call it bootstrapping key (BK). Then, inside the second layer
of encryption, we evaluate the decryption circuit of the �rst scheme. As a result,
the �rst layer of encryption disappears (and its noise too), and the message is still
encrypted, but this time only with the second secret key sk2. The noise in the output
ciphertext is independent of the input noise. In particular, if the input noise was

13

Chapter 2. State of the art on Homomorphic Encryption

large, bootstrapping reduces the noise to a �xed amount, so it is possible to continue
evaluating operations. Every time the noise reaches a critical level, the bootstrapping
is repeated.

µ
sk1

µ
sk1

sk2
sk1

sk2

Dec µ
sk2

Figure 2.3: Original bootstrapping idea - Straight-line boxes represent the �rst
encryption layer, with secret key sk1, while the dashed-line boxes represent the second
encryption layer, with secret key sk2. In order to reduce the noise, the decryption
circuit with respect to the key sk1 is evaluated homomorphically. Thanks to the second
layer of homomorphic encryption, no information about the message or the secret
key sk1 is revealed. The result is a new ciphertext encrypting the initial message, but
with less noise. The encryption of sk1 with the new key sk2 is called bootstrapping
key BK.

After the construction proposed by Gentry, bootstrapping has been simpli�ed. In
particular, for the (binary) schemes allowing trivial ciphertexts, the additional
second layer added to the �rst encryption of the message is not necessary. It
is possible to directly evaluate the decryption circuit on the bits of the noisy
ciphertext, by using the bootstrapping key. The result is still a new encryption of
the message µ with the second secret key sk2 and with less noise. Roughly speaking,
during the evaluation of the decryption circuit, the second layer of encryption
propagates on µ, thanks to the way the bootstrapping key is constructed. Figure 2.4
illustrates the idea we just described.

So, if an HE scheme is able to homomorphically evaluate its own decryption function
plus another small operation (at least), and if publishing the bootstrapping keys does
not compromise the security of the scheme, then it is bootstrappable and it becomes
fully homomorphic.

2.2 Learning with errors: the second and third gen-

eration

In 2005, Regev [Reg05] described the Learning With Errors (LWE) problem. Nowa-
days this problem and its variants are largely used in lattice based cryptology, mainly
in homomorphic encryption constructions. The problem is considered hard and it is
largely used in most of HE constructions. We give more details about its security

14

2.2 Learning with errors: the second and third generation

µ
sk1

c0

c1

ck

sk1
sk2

Dec µ
sk2

Figure 2.4: Many improvements to Gentry's bootstrapping principle consisted in
removing the re-encryption phase by delaying as much as possible the operations
depending on the secret key, and to make them as linear as possible. Instead of re-
encrypting the noisy ciphertexts with an additional layer of homomorphic encryption,
new bootstrappings evaluate the decryption circuit directly on the bits of the noisy
ciphertext by using the encryption of the secret key (i.e. the bootstrapping key).

in Chapter 6. In this section we describe LWE and its variants. Then we rapidly
summarize the main homomorphic constructions based on LWE.

De�nition 2.2.1 (LWE). Let λ be a security parameter (all the following parameters
depend on λ). Let n be an integer (called dimension) and q be an integer (called
modulus). Let χ be a probability distribution over Z. Sample a uniformly random
secret vector s from Znq . We de�ne the LWE distribution, and we call it DLWE

s,χ , as the
distributions that samples pairs (a, b) ∈ Zn+1

q , such that a is chosen uniformly at
random from Znq and b = a · s + e, with e← χ. Then, we distinguish two problems.

• Decision problem: given arbitrarily many samples (a, b) ∈ Zn+1
q , decide if they

come from the distribution DLWE
s,χ or from a uniform distribution over Zn+1

q , for
a �xed s← Znq .

• Search problem: given arbitrarily many samples (a, b) from the distribution
DLWE

s,χ , �nd s.

The LWE search and decision problems are reducible one to each other, and their
average case is asymptotically as hard as worst-case lattice problems, as shown by
Regev in [Reg05]. In practice, both problems are intractable: their hardness depends
on the choice of parameters. The same observation can be done for the variants of
LWE described in the following. We give more details about the subject in Chapter 6.
In 2009, Stehlé, Steinfeld, Tanaka and Xagawa [SSTX09] and in 2010, Lyubashevsky,
Peikert and Regev [LPR10] proposed a variant of LWE over the rings, called RingLWE.

De�nition 2.2.2 (RingLWE). Let λ be a security parameter (all the following pa-
rameters depend on λ). Let N be an integer (size of the ring, generally a power of 2)
and de�ne R = Z[X]/(fN(X)), were fN(X) is a monic polynomial, irreducible over

15

Chapter 2. State of the art on Homomorphic Encryption

Z[X], of degree N (generally fN(X) = XN +1). Let q be a large integer (called mod-
ulus) and Rq = R/qR. Let χ be a probability distribution over R. Sample uniformly
at random a secret polynomial s from Rq. We de�ne the RingLWE distribution, and
we call it DRingLWE

s,χ , as the distribution that samples pairs (a, b) ∈ R2
q, such that a

is chosen uniformly at random from Rq and b = a · s + e, with e ← χ. Then, we
distinguish two problems.

• Decision problem: given arbitrarily many samples (a, b) ∈ R2
q, decide if they

come from the distribution DRingLWE
s,χ or from a uniform distribution over R2

q,
for a �xed s← Rq.

• Search problem: given arbitrarily many samples (a, b) from the distribution
DRingLWE
s,χ , �nd s.

The de�nition we give is more similar to the IdealLWE problem described in [SSTX09]
and later renamed PolynomialLWE. In the PolynomialLWE, a single polynomial a
is sampled: the others are obtained by multiplying a by X i for 0 < i < N and
reducing the result modulo fN(X). The de�nition of [LPR10] is generalized for
the ring of integers in any number �eld. The two versions match if the quotient
polynomial is chosen as a power of 2 cyclotomic, as in our case.

The ring version of LWE seems more attractive than the original one, mainly for
e�ciency reasons. One sample in RingLWE contains the same amount of information
as N LWE samples. As a consequence, the size of ciphertexts and public keys is
reduced. Additionally, the operations with polynomials can be very fast, if a FFT
technique is used. On the other side, the ring structure may bring more weaknesses
from the security point of view.

In [BGV12], a generalized de�nition, including both the LWE and the RingLWE
instances, is given and it is called the general LWE problem, and noted GLWE. In
the literature, GLWE is often called ModuleLWE [LS15].

De�nition 2.2.3 (GLWE (as in [BGV12])). Let λ be a security parameter (all the
following parameters depend on λ). Let N be a power of 2 (size of the ring) and
de�ne R = Z[X]/(XN + 1): if N = 1, R = Z. Let q be a large integer (called
modulus) and Rq = R/qR. Let k be an integer and let χ be a probability distribution
over R. Sample uniformly at random a secret polynomial s from Rk

q . We de�ne the
GLWE distribution, and we call it DGLWE

s,χ,N,k, as the distributions that samples couples

(a, b) ∈ Rk+1
q , such that a is chosen uniformly at random from Rk

q and b = a · s + e,
with e← χ. Then, we distinguish two problems.

• Decision problem: given arbitrarily many samples (a, b) ∈ Rk+1
q , decide if they

come from the distribution DGLWE
s,χ,N,k or from a uniform distribution over Rk+1

q ,

for a �xed s← Rk
q .

16

2.2 Learning with errors: the second and third generation

• Search problem: given arbitrarily many samples (a, b) from the distribution
DGLWE

s,χ,N,k, �nd s.

If N = 1, the GLWE problem reduces to the LWE instance. If instead k = 1, the
GLWE problem reduces to the RingLWE instance.
The TFHE scheme, described in the main chapters of this manuscript, is based
on the LWE problem. In order to make the description more general, we give in
Chapter 3 another generalized de�nition of the LWE problem, which is similar to
the GLWE de�nition.

2.2.1 Second Generation: BGV

One of the �rst homomorphic encryption schemes based on the LWE problem and
on its RingLWE variant is the scheme proposed by Brakerski, Gentry and Vainkun-
tanathan in 2012 [BGV12], and shortly called BGV after the authors names. It is
inspired and uses techniques from the homomorphic schemes proposed in [BV11a]
and [BV11b]. BGV is a LWE/RingLWE-based LHE scheme, able to evaluate L-leveled
arithmetic circuits.
In order to keep the noise constant, they use a technique called modulus switching.
The modulus switching reduces the noise magnitude and the modulus size at the
same time, but does not decrease their ratio. To be able to perform the modulus
switching L times, i.e. to evaluate a L-leveled circuit, they initially set L di�erent
decreasing modulus qL−1, . . . , q0 and switch from one to another by keeping the noise
essentially constant. They also use a key-switching technique, in order to switch from
one key to another. This is crucial during the evaluation of multiplications.
Bootstrapping could be used, but it is seen just as an optimization, and it does
not impact the L-level evaluation. With the ring version of BGV, it is possible to
do batching, i.e. to pack several messages in a single ciphertext and evaluate the
operations on all the messages at the same time (with the same e�ciency as if the
same operations were evaluated on a single input).

The BGV scheme

In this section, we describe the generic BGV construction, based on the GLWE
problem. This way, both the scalar and the ring versions are summarized.
Let λ be a security parameter. The dimension of all the parameters for this encryp-
tion scheme depend on λ. Let n be an integer, called the dimension and let k and
N (ring dimension, used to de�ne R = Z[X]/(XN + 1)) be two integers such that
the product kN is equal to n (if N = 1 and k large we have the LWE instance, if
N large and k = 1 we have the RingLWE instance). Let m = d(2k + 1) log qe be an
integer. Let q be an integer, called the modulus, Rq denotes R/qR and R2 denotes
R/2R (plaintext space)3. Let χ be a probability distribution over R (that samples

3The plaintext space can be generalized for a larger modulus p, instead of 2.

17

Chapter 2. State of the art on Homomorphic Encryption

small coe�cients). The BGV scheme is composed by the following algorithms.

• Secret key generation: sample a random secret vector s ← χk. Then the
secret key of the scheme is

sk = (1,−s) ∈ Rk+1
q .

The LWE problem is still hard, even if the secret is sampled from the χ distri-
bution [ACPS09].

• Public key generation: given the secret key sk = (1, s), we generate uni-
formly at random a matrix A ← Rm×k

q and a random vector of errors/noises
e← χm. Then we set b = As + 2e. The public key is

PK = [b|A] ∈ Rm×(k+1)
q .

The public key generation also includes the generation of eventual evaluation
keys, such as key-switching keys and bootstrapping keys.

• Encryption: let µ ∈ R2 be a message. To encrypt it we sample a random
vector r ∈ Rm

2 . The ciphertext is

c = (µ, 0, . . . , 0) + PKT r ∈ Rk+1
q .

• Decryption: the decryption consists in a scalar product between the cipher-
text c and the secret key sk reduced modulo q and then modulo 2.

• Evaluation of addition: the evaluation of the homomorphic addition is per-
formed as an addition of two ciphertexts.

• Evaluation of multiplication: the evaluation of the multiplication consists
in a multiplication of two ciphertexts, but it changes the nature of the output
ciphertext. In fact, this latter results to be encrypted with respect to the tensor
product of the secret key sk with itself (the key has changed). To supply to
this, a relinearization process (using key switching) is needed.

• Key switching: used to switch from a key to another. Let c be a ciphertext
encrypted with the public key PK, corresponding to the secret sk. The key
switching produces a new ciphertext c′ encrypting the same message, with
respect to a secret sk′. To do that, it makes use of a key-switching key, noted
KS, which is an encryption of the secret key sk (times some powers of 2) with
the public key PK′. Then, the key switching consists in a product between the
vector containing the bit decomposition of c times KS. All the secret keys of
the scheme and the key-switching keys are generated at the beginning, during
the key generation phase.

18

2.2 Learning with errors: the second and third generation

• Modulus switching: used to switch from a level to another and to keep
the noise constant. It takes in input a ciphertext c with large modulus q
and outputs a new ciphertext c′ encrypting the same message, with a smaller
modulus q′ and smaller noise. The procedure consists in multiplying c times
q′/q and to round the result to the nearest integer polynomial such that c = c′

mod 2. The modulus levels are generated at the beginning and their number
corresponds to the multiplicative depth of the function to be evaluated.

Variants. There exists a scale invariant version of the BGV scheme, described
in [Bra12] and [FV12]. A homomorphic scheme is said to be scale invariant if its
properties depend only on the ratio between the modulus q and the initial noise
level, not on their absolute value [Bra12]. In the scale invariant scheme, the message
is multiplied by a constant factor (rounded ratio of the modulus q and the plaintext
modulus) before encryption. In scale invariant schemes, the messages are encoded
in the most signi�cant bits (instead of the least signi�cant ones, as done by Regev
in 2005) and the noise analysis is simpler.
Another BGV-based construction that is worth mentioning is HEAAN (Homomor-
phic Encryption for Arithmetic of Approximate Numbers). This new promising con-
struction has been presented by Cheon et al. in 2017 [CKKS17] and bootstrapped
in 2018 [CHK+18]. The scheme supports approximate addition and multiplication
of encrypted messages with a predetermined precision, it allows batched operations
and a fast bootstrapping of packed ciphertexts. The scheme has been implemented
and it is available in open-source.

2.2.2 Third Generation: GSW

In 2013 Gentry, Sahai and Waters propose a new FHE scheme, called GSW after
their names. GSW is the principal representative of the third generation of FHE
schemes. It is a LWE-based scheme and uses what the authors call the approximate
eigenvector method to perform multiplications: the ciphertexts are matrices, the
secret key is an approximate eigenvector of the ciphertext matrix and the message
is the corresponding eigenvalue.
The GSW scheme is originally described as a LWE based scheme [GSW13], but it can
be presented in its ring version. To follow the same footstep as in previous section,
we describe GSW with respect to the generalized problem GLWE.
As for the BGV scheme, GSW can be used in both leveled and bootstrapped mode.

The GSW scheme

Let λ be a security parameter. As for BGV, all the parameters for the GSW encryp-
tion scheme depend on λ.
Again, let n an integer dimension and let k and N be two integers such that the
product kN is equal to n. As R = Z[X]/(XN + 1), if N = 1 and k is large we have

19

Chapter 2. State of the art on Homomorphic Encryption

the LWE instance, if N is large and k = 1 we have the RingLWE instance. Let q
the integer modulus (possibly a power of 2), Rq denotes R/qR. Let ` = blog qc + 1
and m = (k + 1)` be two integers. Let χ be a probability distribution over Rq. In
the original description of the scheme the authors de�ne four functions they use
in di�erent parts of the construction: BitDecomp (an exact decomposition in base
2), BitDecomp−1 (the inverse of BitDecomp), Flatten (composition of BitDecomp and
BitDecomp−1) and Powersof2 (multiplication by di�erent powers of 2). Instead we
describe the scheme by using the gadget approach, as in [AP14].
The gadget matrix H is de�ned as the block diagonal matrix from Equation (2.3),
where the coe�cients in the diagonal blocks are increasing powers of 2:

H =

20 . . . 0
...

. . .
...

2`−1 . . . 0
...

. . .
...

0 . . . 20

...
. . .

...
0 . . . 2`−1

∈Mh`,h(Rq). (2.3)

The BGV's operation Powersof2 on a vector a ∈ Rh
q corresponds to multiply H · a.

The decomposition of a vector with respect to the gadget matrix is the BitDecomp
operation. We note the decomposition with respect toH asDecH . Since the elements
in the columns of the gadget matrix are superincreasing, this operation is e�cient.
If a decomposed vector a′ is multiplied on the left with the gadget matrix, the
operation corresponds to the inverse of the decomposition, i.e. the BitDecomp−1

operation. This means that H · DecH(a) = a. The gadget representation comes
from [MP12] and [AP14], and it can be generalized for a gadget basis di�erent from
2 (generally a power of 2).
In the following, h is equal to k+ 1. The GSW scheme is composed by the following
algorithms.

• Secret key generation: sample a random secret vector s ← Rk
q . Then the

secret key of the scheme is

sk = (1,−s) ∈ Rk+1
q .

• Public key generation: given the secret key sk = (1, s), we generate uni-
formly at random a matrix A ← Rm×k

q and a random vector of errors/noises
e← χm. Then we set b = As + e. The public key is

PK = [b|A] ∈ Rm×(k+1)
q .

The public key generation also includes the generation of eventual evaluation
keys, such as key-switching keys and bootstrapping keys.

20

2.2 Learning with errors: the second and third generation

• Encryption: let µ ∈ Rq be a message. To encrypt it we sample a random
matrix R ∈ Bm×m. The ciphertext is

C = R · PK + µ ·H ∈ Rk+1
q .

• Decryption: let v = Powersof2(sk). The �rst ` elements of v are equals to
1, 2, . . . , 2`−1. Let i ∈ J0, `−1K. The decryption of the ciphertext C is computed
as

µ′ =

⌊
Ci · v
vi

⌉
.

This algorithm works for small messages. For general decryption, the authors
propose to use an idea from [MP12]: each one of the bits of the message is
recovered from one of the �rst ` elements of the product C · v, starting from
the least signi�cant bits.

• Evaluation of addition: let C1 and C2 two GSW ciphertexts, the addition
consists in a simple addition of the ciphertexts.

• Evaluation of multiplication: let C1 and C2 two GSW ciphertexts, the mul-
tiplication consists in multiplying the �rst ciphertext times the decomposition
of the second one with respect to the gadget: C1 ·DecH(C2).

The scheme can be bootstrapped. Further improvements are proposed in [AP14]:
here the bootstrapping has almost quartic asymptotic complexity with respect to
the the security parameter.
In 2015, Ducas and Micciancio [DM15] proposed a new fast bootstrapping with
quasi-quadratic asymptotic complexity. Their bootstrapping (very fast compared to
previous ones) is performed after every NAND gate evaluation.
Additional improvements to this scheme are proposed in [BR15], where the scheme
of [DM15] is generalized to support a bigger message space (not just binary).
The TFHE construction described in the main chapters of this manuscript is a GSW
based construction. Our construction is an improvement of the scheme and of the
techniques proposed by [DM15].

Additional homomorphic constructions based on NTRU

Additional homomorphic encryption schemes are presented in the literature. One
family that deserves to be mentioned is the one based on NTRU. NTRU is a lattice
based cryptosystem that has been presented for the �rst time at the Crypto rump
session in 1996 by Ho�stein, Pipher and Silverman [HPS98], and modi�ed later by
Stehlé and Steinfeld in [SS11] for security reasons.
Two known homomorphic encryption schemes based on NTRU are YASHE (Yet
Another SHE), presented by Bos, Lauter, Loftus and Naehrig in [BLLN13], and
LTV, presented by López-Alt, Tromer and Vaikuntanathan in [LTV12].

21

Chapter 2. State of the art on Homomorphic Encryption

YASHE is scale invariant and its performances have been largely compared with the
ones of the BGV scale invariant version FV ([LN14], [CS16]). LTV is a multi-key
FHE scheme, principally presented as a valuable multi-party computation solution.
Recent sub�eld lattice attacks by [ABD16] have compromised the asymptotic secu-
rity for both YASHE and LTV schemes.

22

Chapter 3

LWE and GSW over the Torus

The homomorphic encryption scheme TFHE described in the main chapters of this
manuscript is a GSW based scheme. The �T� letter in TFHE stands for the real torus,
noted T and de�ned as the quotient R/Z, or simply as the reals modulo 1. But what
has the torus to do with homomorphic encryption or with the GSW construction?
As we explained in Chapter 2, GSW is a LWE-based scheme. LWE is de�ned over
Zq, but it can also be rede�ned over the torus. The idea is that integers modulo q
can be re-scaled by dividing them by q and reducing modulo q/q = 1. This reduces
the problem to a discrete subset of the real numbers between 0 and 1. Instead of
working in a discrete subset, we can rede�ne the problem in the continuous interval
T. Working on the torus is quite practical: the scheme is scale invariant, the security
analysis and the study of noise growth are simpli�ed, and it allows to better abstract
the problems with which we are dealing. Additionally, the torus has a nice Z-module
structure, that helps to clarify the complex set of morphisms, operations and more
generally interactions in the plaintext space.
The torus structure has already been used in previous works on LWE: already
Regev [Reg05] used it in its paper about LWE (the right hand side of the LWE
samples is in the torus), and, for example, after him Cheon and Stehle [CS15]
de�ned the scale invariant version of LWE completely over the torus.

In this chapter we give a generalized de�nition (similar to the GLWE de�nition) for
the scale invariant LWE problem and we generalize it over T. Then, by following
this footstep, we rede�ne and re-formalize the GSW construction over the torus.

3.1 Preliminary notions

We start this chapter by �xing the notations we use in the rest of the manuscript
and by rapidly recalling some basic concepts about modules, distributions, distances
and norms.

23

Chapter 3. LWE and GSW over the Torus

Basic notations

We always denote the security parameter by λ. We note by B the set {0, 1} (without
any structure), by Z the set of integers and by T the real Torus R/Z, i.e. the set of
real numbers modulo 1.
We denote by ZN [X] the ring of polynomials Z[X]/(XN + 1). TN [X] denotes
R[X]/(XN + 1) mod 1 and BN [X] denotes the polynomials in ZN [X] with binary
coe�cients.
Generally, N is taken as a power of 2, soXN+1 is the 2N -th cyclotomic polynomial1.
Using a power of 2 becomes very practical when it comes to implementing the
schemes.
We denote by Ep the set of vectors of dimension p with entries in E and byMp,q(E)
the set of (p× q)-size matrices with elements in E.

3.1.1 Modules

The real torus has a Z-module structure. Roughly speaking, T has a commutative
group structure with respect to the addition, and it owns an external product with
integer coe�cients. In practice, the internal product × between torus elements is
not de�ned (i.e. the torus is not a ring). Observe as instance, the product 0× 1

2
= 0

and the product 1 × 1
2

= 1
2
, where 0, 1 and 1

2
are seen as elements of T. The two

products should produce the same result in T since 0 and 1 are equivalent on the
torus, but they do not. Instead, the external product · between an element of Z and
an element in T is correctly de�ned and produces a torus element. To use the same
example as before, 0 · 1

2
, where 0 ∈ Z and 1

2
∈ T, is equal to 0 ∈ T, and 1 · 1

2
, where

1 ∈ Z and 1
2
∈ T, is equal to 1

2
∈ T.

We give a proper de�nition of modulus.

De�nition 3.1.1 (R-module). Let (R,+,×) be a commutative ring2. We say that
a set M is a R-module when (M,+) is an Abelian group, and when there exists
an external operation · (product) which is bi-distributive and homogeneous. Namely,
∀r, s ∈ R and x, y ∈M the following properties are satis�ed:

• Unitary: 1R · x = x, where 1R denotes the unity of R,

• Left distributive: (r + s) · x = r · x+ s · x,

• Right distributive: r · (x+ y) = r · x+ r · y,

• Homogeneous: (r × s) · x = r · (s · x).

1The n-th cyclotomic polynomial is the monic polynomial having as roots the primitive n-th
roots of unity e2πik/n, with 0 < k < n prime with n.

2If the ring is not commutative, we have to distinguish between right and left R-modules,
depending on which side the product acts.

24

3.1 Preliminary notions

A R-module M shares many arithmetic operations and constructions with vector
spaces. The R-module structure propagates to vectors Mp or matrices Mp,q(M):
the left dot product with a vector in Rp or the left matrix product in Mk,p(R)
(respectively) are both well de�ned.
As a consequence, for all positive integers N and k, we recall that (TN [X]k,+, ·) is
a ZN [X]-module.

3.1.2 Probability distributions

In most FHE schemes, a small amount of noise from a Gaussian distribution is added
during the encryption for security reasons. In the literature, this noise is quanti�ed
by using a noise parameter, that is proportional to the standard deviation of the
Gaussian distribution: let σ be the standard deviation, the noise parameter is equal
to
√

2πσ. The factor
√

2π in the noise parameter is related to the Fourier parameter
and it is used in the security analysis, but it is often a source of confusion in concrete
implementations.
In the following, we always quantify the noise via its standard deviation or its
variance, which lead to noise propagation formulas that are more natural.

Gaussian Distributions

Let k ≥ 1 be an integer, σ ∈ R+ and c ∈ Rk. We say that a random variable X ∈ Rk

has Gaussian (or Normal) distribution of center (or mean) c and standard deviation
σ if and only if its probability density function is

DGσ,c(x) =
1√

2πσ2
exp

(
−‖x− c‖2

2σ2

)
for all x ∈ Rk.

In the literature, the Gaussian distribution is noted by N (c, σ2) (σ2 is the variance
of the distribution). In this manuscript we note it as DGσ,c: the letter D is our notation
for the probability distributions and the su�x G is used to distinguish the Gaussian
one. If c is omitted, then it is implicitly set to 0.
Let S be a subset of Rk. Then DGσ,c(S) denotes

∑
x∈S DGσ,c(x), if S discrete, or∫

x∈S DGσ,c(x) · dx, if S is measurable.
For all closed (continuous or discrete) additive subgroup M ⊆ Rk, DGσ,c(M) is �nite,
and de�nes a (restricted) Gaussian Distribution DGM,σ,c of standard deviation σ and
center c overM , with the density function DGM,σ,c(x) = DGσ,c(x)/DGσ,c(M). Let L be a
discrete subgroup ofM , then the Modular Gaussian distribution DGM/L,σ,c overM/L

exists and is de�ned by the density DGM/L,σ,c(x) = DGM,σ,c(x + L).

Remark 3.1.1. A random variable X ∈ R is σ-SubGaussian if and only if it satis-
�es the Laplace-transformation bound. Namely, for all t ∈ R the expectation veri�es
E(exp(tX)) ≤ exp(σ2t2/2). Observe that a Gaussian distribution of standard devia-
tion σ is also a σ-SubGaussian distribution. Let X and X ′ be two independent σ and

25

Chapter 3. LWE and GSW over the Torus

σ′-SubGaussian random variables (respectively). Then, for all α, β ∈ R, the random
variable obtained as the combination αX+βX ′ is

√
α2σ2 + β2σ′2-SubGaussian. We

often use this property in the analysis of the noise growth presented in following
sections.

Concentrated distribution on the Torus

In general, distributions over the torus do not have expectation nor variance: for
instance, it would be impossible to de�ne the expectation of the uniform distribution
over T. However, when the support of the distribution is concentrated on a small
interval, it is still possible to uniquely de�ne these notions.
We say that a distribution X on the torus is concentrated if and only if its support
is included in a ball of radius 1

4
of T, except for negligible probability. In this case,

we de�ne the variance Var(X) and the expectation E(X) of X as respectively

• Var(X) = min
x̄∈T

(∑

x

p(x)|x− x̄|2
)
,

• E(X) as the position x̄ ∈ T which minimizes the variance expression.

In the variance formula, we make an abuse of notation by using the norm symbol
|x − x̄|: actually, it represents the distance of the two points over the torus. This
de�nition of expectation by an optimization formula yields the same result, up to a
negligible amount, as if we lift the distribution over any real interval of length < 1

2
,

and compute its real expectation modulo 1.
By extension, we say that a distribution X over Tn or TN [X]k is concentrated if
and only if each coe�cient has an independent concentrated distribution on the
torus. Then the expectation E(X) is the vector of expectations of each coe�cient,
and Var(X) denotes the maximum of each coe�cient variance.

These expectation and variance over T follow the same linearity rules than their
classical equivalent over the reals.

Remark 3.1.2. Let X1,X2 be two independent concentrated distributions on either
T,Tn or TN [X]k, and let e1, e2 ∈ Z such that X = e1 · X1 + e2 · X2 remains concen-
trated. Then

• E(X) = e1 · E(X1) + e2 · E(X2),

• Var(X) ≤ e2
1 · Var(X1) + e2

2 · Var(X2).

up to a negligible amount.

Observe that SubGaussian distributions with small enough parameters are neces-
sarily concentrated. Every distribution X on either T,Tn or TN [X]k where each
coe�cient is σ-SubGaussian, with σ ≤ 1/

√
32 ln(2)(λ+ 1), is a concentrated distri-

bution: a fraction ≥ 1− 2−λ of its mass is in the interval [−1
4
, 1

4
].

26

3.2 The Learning With Errors problem revisited

Remark 3.1.3. A better solution might be to take truncated distributions (as sug-
gested in [MP12]) in order to avoid all the negligible amounts appearing in the prob-
ability formulas.

3.1.3 Distance and Norms

We denote as ‖·‖p and ‖·‖∞ the standard norms for scalars and vectors over the real
�eld or over the integers. By extension, the norms ‖P (X)‖p and ‖P (X)‖∞ of a real
or integer polynomial P are the norms of its coe�cient vector. If P is a polynomial
mod XN + 1, we take the norm of its unique representative of degree ≤ N − 1.
If x is an vector in Tk, we note ‖x‖p = min

u∈x+Zk
(‖u‖p) is the p-norm of the repre-

sentative of x with all coe�cients in] − 1
2
, 1

2
]. It satis�es the separation and the

triangular inequalities, but it is not a norm because it lacks homogeneity3, and Tk is
not a vector space either. Instead, it is sub-homogeneous, i.e. it satis�es the property
‖m · x‖p ≤ |m| · ‖x‖p, ∀m ∈ Z. By extension, we de�ne ‖P (X)‖p for a polynomial
P ∈ TN [X] as the p-norm of its unique representative in R[X] of degree ≤ N − 1
and with coe�cients in]− 1

2
, 1

2
].

De�nition 3.1.2 (In�nity norm over Mp,q(TN [X])). Let A ∈ Mp,q(TN [X]). We
de�ne the in�nity norm of A as

‖A‖∞ = max
i∈J1,pK
j∈J1,qK

‖ai,j‖∞.

3.2 The Learning With Errors problem revisited

In this section, we revisit the LWE problem (and its variants) by abstracting over
the real torus. A full de�nition of the LWE problem over the torus is given in [CS15].
They call the instance the Scale Invariant LWE problem.

De�nition 3.2.1 ((Scale-Invariant) LWE (adapted from [CS15])). Let n ≥ 1 be
an integer, s be in Zn and X a distribution over R. We de�ne SILWEs,X as the
distribution over Tn × T obtained by sampling a pair (a, b), where the left member
a ∈ Tn is chosen uniformly random and the right member b = a · s + e. The error e
is a sample from the distribution X . Let S be a distribution over Zn. We can de�ne
the two following problems.

• Decision problem: given arbitrarily many independent samples, distinguish be-
tween SILWEs,X samples and uniformly random samples from Tn × T, for a
�xed s← S.

3Mathematically speaking, a more accurate notion would be distp(x,y) = ‖x− y‖p, which is a
distance. However, the norm symbol is clearer for almost all practical purposes.

27

Chapter 3. LWE and GSW over the Torus

• Search problem: given arbitrarily many independent SILWEs,X samples, �nd
s← S.

As for LWE, the scale invariant problems are considered hard. The SILWE problem
can be easily used to encrypt messages from a discrete message spaceM⊂ T. The
idea can be easily explained with images (as shown in [CGGI16b]) and re�ects the
idea of Regev's cryptosystem. Formal details are given later.
Figure 3.1 represents the pair (a, b) ∈ Tn × T. The left part a, also called mask, is
indicated inside the ring, while the right part b is represented by the ring itself. The
ring can be seen as the continuous real torus, with 0 in the bottom and the other
values of the interval following in counterclockwise. We chose a discrete message
spaceM⊂ T: in the �gure we representM = {0, 1/3, 2/3}.

2
3

1
3

0

a

(a, b)

0
b

Figure 3.1: The idea: the circle represents the real torus, and in particular the right
part of the sample b ∈ T. The left part is indicated inside the ring by a ∈ Tn. In this
example, the discrete message space M ⊂ T is set to {0, 1/3, 2/3}: the 0 is in the
bottom and the other messages follow in counterclockwise.

Now, if we want to encrypt a message µ ∈ M (µ = 1/3 in the example shown in
Figure 3.2), we start by computing a quantity called the phase, noted ϕ, and by
sampling a random mask a ∈ Tn. The phase can be computed in two ways:

1. As the addition between the message and a random small error from the dis-
tribution X , that is generally chosen to be the Gaussian distribution (centered
in 0),

2. As a random sample from a Gaussian distribution centered in the message.

The pair (a, ϕ) is called the private representation: the phase is in clear and it reveals
the message. By knowing the message spaceM, the message can be retrieved from
the phase in two ways:

1. Rounding the phase to the nearest message possible inM,

2. Mathematically evaluate the expectation of its Gaussian distribution (in a
probability space Ω we describe later). In practice, we never use this method
because an unique sample is not su�cient to compute the expectation.

28

3.2 The Learning With Errors problem revisited

In order to hide the phase, we produce the public representation by using a secret
key s ∈ Zn (or more commonly in Bn). We compute b = ϕ + a · s and we reveal
the pair (a, b) (Figure 3.3). Thanks to the hardness of the SILWE problem, this is
indistinguishable from a random sample in Tn × T, so the message is hidden. A
special case is the one where the mask a is chosen as the vector of zeros. In this case
the public and private representations are equal and the phase is in clear: we call
such samples trivial and they never occur spontaneously.

1
3

0

a

(a, ϕ)

2
3

0

Figure 3.2: Private representation:
the phase is in clear and the message
can be easily found.

a

(a, b)

Figure 3.3: Public representation:
indistinguishable from a random sam-
ple in Tn × T.

To decrypt the message, we �unlock� the public representation by using the secret
key: we compute the phase as ϕ = b − a · s and we retrieve the message from the
phase as explained before.
The LWE samples have the additive homomorphic property, as shown in Figure 3.4.
When we add homomorphically two samples (or more), we simply add the right
and left part, and at the same time, we are adding the phases. From what we
explained in Remarks 3.1.1 and 3.1.2, as the message is the expectation of the
phase, the message of the resulting ciphertext is the sum of the original messages,
but the standard deviation σ, representing the noise of ciphertexts, grows sublinearly.

Remark 3.2.1. This encryption scheme has also an asymmetric variant: the public
key is set as a list of random fresh encryptions of 0. To encrypt a message µ ∈M,
one chooses a small random subset of the elements of the public key, and sums it to
the trivial sample (0, µ).

The same idea presented in the �gures can be extended to the ring version of LWE. In
order to unify, generalize and abstract all the instances, we propose in next section a
new de�nition of the LWE problem, over the torus, that we call TLWE. The de�nition
follows the same footstep of De�nition 3.2.1 (as in [CS15]) and De�nition 2.2.3 (as
in [BGV12]). Then, we extend the same formalism to the description of the GSW
construction, and we call it TGSW. The new formalism helps to better clarify the

29

Chapter 3. LWE and GSW over the Torus

a1 a2 a1+a2+ =

b1 + b2b1 b2

+ =

µ = µ1 + µ2µ1 µ2

σ =
√
σ2
1 + σ2

2σ1 σ

a1 a2 a1+a2

ϕ1 ϕ2 ϕ1 + ϕ2

Figure 3.4: Additive homomorphic property: the homomorphic addition between
LWE ciphertexts is performed by simply adding the right and the left parts. At the
same time, phases and messages (expectation of the phase) are added while the stan-
dard deviation grows sublinearly.

intricate-at-�rst-sight structure of the constructions and allows to explicit all the
operations between the messages in the di�erent plaintext spaces (and so between
ciphertexts).

3.2.1 TLWE

In this section we clarify and formalize the ideas proposed in the previous section
and we give a generalized de�nition of LWE over the torus, that we call TLWE.
In the previous example, we talked about the phase as a quantity used during
encryption and decryption. In TLWE, the phase is de�ned as a proper function
depending on the secret key and becomes the central building block. All other
notions are deduced from the algebraic properties of this linear function: message
space, ciphertext space, encryption, decryption. In particular, this abstraction
allows to unify scale invariant FHE schemes, based not only on LWE, RingLWE,
GLWE, but also on other problems like Approx-GCD or NTRU.

In this section and in the following one we distinguish two types of de�nitions,
�abstract� and �canonical�. The abstract de�nitions (the term abstract is explicit)
are interesting from a theoretical point of view: they are generalized and include
the di�erent instances of scale invariant problems/schemes. Fixing the parameters
in the abstract de�nitions gives the di�erent instances.
Our TFHE scheme uses only scalar and ring LWE instances. It is for this reason that

30

3.2 The Learning With Errors problem revisited

we also give explicit classical de�nitions (again over the torus): these are the ones
which are su�cient for the comprehension of TFHE.

De�nition 3.2.2 (Abstract TLWE problems). Let I be an ideal of Z[X], we call
R = Z[X]/I and TI [X] = T[X]/I. A phase function is a lipschitzian4 R-module
morphism from a R-moduleM to TI [X]. The abstract TLWE problem is parametrized
by an error distribution X onM , and a family (ϕs)s∈S of phase functions, indexed by
a secret s. The homogeneous abstract TLWE distribution for the secret s is Uker(ϕs)+
X (sum of the uniform distribution over ker(ϕs) and an error from X). Abstract
TLWE is λ-secure if neither of the following two problems can be solved in less than
2λ bit operations, or with advantage 2−λ by any PPT5 adversary:

• Abstract TLWE decision problem: given arbitrarily many samples in M , dis-
tinguish if they come from the uniform distribution on M or from Uker(ϕs)+X
for a particular but unknown secret phase ϕs.

• Abstract TLWE search problem: given arbitrarily many samples from Uker(ϕs)+X
for a particular secret phase ϕs, �nd s.

If for all secret s, the distributions Ukerϕs +X is concentrated, Regev's cryptosystem
can be abstracted as follows:

• The message space is the image of ϕs in TI [X].

• The ciphertext space is the domain M of ϕs.

• The encryption of µ is an approximation of a random preimage ϕ−1
s (µ). Ab-

stractly, a sample from Uϕ−1
s (µ)+X .

• The (approximate) decryption of a ciphertext c is its image ϕs(c).

Di�erent choices of the ideal I, of the module M and of the phase function ϕs,
explicit di�erent instances of the abstract TLWE problem.
If we instantiate this de�nition with I = (X + 1), then we get R = Z and
TI [X] = T, and obtain scalar schemes. Setting M = Tn+1 and the phase as
ϕs(a, b) = b − a · s, we retrieve the scale-invariant LWE from De�nition 3.2.1. By
choosing instead M = (Z/qZ)n+1 with phase ϕs(a, b) = (b − sa)/q and discrete
Gaussian error, we retrieve the well known LWE mod q (described in Chapter 2).
If we set M = T and take ϕs(x) = p.x where p is a secret integer, then the
TLWE problem consists in recognizing approximations of multiples of 1/p, so the
TLWE abstraction can express cryptosystems based on the (dual) approx-GCD
problem. Now, if we take a di�erent ideal, for instance I = (XN + 1), then the

4In short, a lipschizian function is a function for which the ratio between the variation of the
ordinates and the variation of the abscissas is limited by a constant positive factor.

5Probabilistic Polynomial Time.

31

Chapter 3. LWE and GSW over the Torus

canonical choice for a phase ϕs(a, b) = b − a · s expresses RingLWE, depending
on the dimension of a. Many other choices of phases are possible, for instance
ϕ(f,g) : TN [X]2 → TN [X], (x, y) 7→ fx− gy for small secret polynomials f, g, would
allow to build FHE over scale invariant version of NTRU.

In the rest of the manuscript, we are mainly interested in the �canonical� TLWE
problem (that we just call the TLWE problem): we give a speci�c de�nition for that.

De�nition 3.2.3 (TLWE problem). Let k ≥ 1 be an integer, N be a power of 2
and σ ∈ R≥0 be a standard deviation. Let the secret key space S be composed by
the binary vectors s ∈ BN [X]k that we assume to be uniformly chosen with n ≈ kN
bits of entropy6. The phase ϕs is de�ned over M = TN [X]k×TN [X] by ϕs((a, b)) =
b − a · s. By de�nition it is (kN + 1)-lipschitzian for the `∞ distance. The error
distribution X is (0,DGTN [X],σ), where DGTN [X],σ is the modular Gaussian distribution

of standard deviation σ over TN [X]. By de�nition, a homogeneous TLWE sample
can be constructed as (a, a · s + e) where a is uniformly sampled in TN [X]k (or in
a su�ciently dense submodule7) and e ← DGTN [X],σ. As before, we can de�ne two
problems:

• TLWE decision problem: for a particular but unknown secret phase ϕs, distin-
guish between the uniform distribution on TN [X]k × TN [X] and the samples
from the TLWE distribution.

• TLWE search problem: given arbitrarily many samples from the TLWE distri-
bution for a particular secret phase ϕs, �nd s.

De�nition 3.2.3 considers a continuum between the LWE (for N = 1) and the
RingLWE (for k = 1) instances, but in the following we only consider these two
instances for our applications.

Furthermore, we de�ne as trivial the samples having the mask a = 0 and as
noiseless the samples having the standard deviation σ = 0. To encrypt a message
µ ∈ TN [X] (i.e. produce a fresh ciphertext of µ) we sum the trivial sample
(0, µ) ∈ TN [X]k × TN [X] with a homogeneous TLWE sample.

From a practical point of view, the fact that the phase is lipschitzian makes this
decryption resilient to numerical errors, and allows to work with approximations.
Plus, thanks to the linearity of the phase, the cryptosystem is homomorphic with

6An equivalence between LWE and binLWE, i.e. LWE with binary secret has been proven
in [BLP+13, Mic18]. The same reduction for the Ring variant of LWE is still an open problem.

7A submodule G is su�ciently dense if there exists an intermediate submodule H such that
G ⊆ H ⊆ Tn, the relative smoothing parameter ηH,ε(G) is ≤ σ, and H is the orthogonal in Tn
of at most n− 1 vectors of Zn. This de�nition allows to convert any (Ring)-LWE with non-binary
secret to a TLWE instance via binary decomposition.

32

3.2 The Learning With Errors problem revisited

respect to the addition. However, it is a noisy cryptosystem, in a sense that after
encrypting and decrypting a message µ, the result is not exactly µ, but a close
approximation µ+ e, where e← X is a small error.
There are use-cases, like �oating point computations [CKKS17] or in general dif-
ferential privacy, where these approximations of the plaintext are considered valid.
However, if we need an exact result, we have two options. The �rst one is the histor-
ical choice in Regev cryptosystem: restrict the message space to a discrete subset,
whose packing radius is larger than the amplitude of the distribution X , and retrieve
the exact plaintext by rounding the phase. If rounding is easy to set-up in practice,
its non-linearity complicates the correctness analysis, especially when the current
sample is not fresh, but rather a linear combination of previous samples. Also, re-
stricting the message space prevents some �oating point applications and bounds
plaintext operations to just small abelian groups. The second option, consists in
taking E(X) = 0, and thus, the plaintext becomes the expectation of the phase.
This option does not require to restrict the message space and works with in�nite
precision over the continuous one. Furthermore, the continuity and linearity of the
expectation ease the analysis of morphism properties and of the noise propagation,
but it requires to properly de�ne a probability space, we call Ω.

De�nition 3.2.4 (The Ω-probability space). Since samples are either indepen-
dent (random, noiseless, or trivial) fresh c ← TLWETN [X],s,σ(µ), or linear combi-
nation c̃ =

∑p
i=1 ei · ci of other samples, the probability space Ω is the product of

the probability spaces of each individual fresh samples c with the TLWE distribu-
tions de�ned in de�nition 3.2.3, and of the probability spaces of all the coe�cients
(e1, . . . , ep) ∈ ZN [X]p or Zp that are obtained with randomized algorithm.

In other words, instead of viewing a TLWE sample as a �xed value which is the
result of one particular event in Ω, we will consider all the possible values at once,
and make statistics on them.

To conclude this section, we de�ne some important functions on TLWE samples:
message, error, noise variance, and noise norm. These functions are well de�ned
mathematically, and can be used in the analysis of various algorithms. However,
they cannot be directly computed or approximated in practice: in fact we want to
compute these functions on single samples from the random variable, but to compute
variance and expectation a single sample is not su�cient.

De�nition 3.2.5. Let c be a random variable ∈ TN [X]k+1, which we interpret as a
TLWE sample. All probabilities are on the Ω-space. We say that c is a valid TLWE
sample if and only if there exists a key s ∈ BN [X]k such that the distribution of the
phase ϕs(c) is concentrated. If c is trivial, all keys s are equivalent, else the mask of
c is uniformly random, so s is unique. We then de�ne:

• The message of c, denoted as msg(c) ∈ TN [X], as the expectation of ϕs(c).

33

Chapter 3. LWE and GSW over the Torus

• The error, denoted Err(c), is equal to ϕs(c)−msg(c).

• Var(Err(c)) denotes the variance of Err(c), which is by de�nition also equal to
the variance of ϕs(c).

• Finally, ‖Err(c)‖∞ denotes the maximum amplitude of Err(c) (possibly with
overwhelming probability)8.

Unlike the classical decryption algorithm, the message function can be viewed as
an ideal black box decryption function, which works with in�nite precision even if
the message space is continuous. Provided that the noise amplitude remains smaller
than 1

4
, the message function is perfectly linear. Using these intuitive and intrinsic

functions will considerably ease the analysis of all algorithms in this paper.

Remark 3.2.2. Let c1, . . . , cp be p valid and independent TLWE samples under the
same key s, and let e1, . . . , ep ∈ R be p integer polynomials. If the linear combination
c =

∑p
i=1 ei · ci is a valid TLWE sample, it satis�es msg(c) =

∑p
i=1 ei ·msg(ci) with

• Variance: Var(Err(c)) ≤∑p
i=1 ‖ei‖2

2 · Var(Err(ci)),

• Noise amplitude: ‖Err(c)‖∞ ≤
∑p

i=1 ‖ei‖1 · ‖Err(ci)‖∞.

If the last bound is < 1
4
, then c is necessarily a valid TLWE sample (under the same

key s).

3.2.2 TGSW

As presented in previous section, TLWE samples can be linearly combined to obtain
a new sample encrypting the linear combination of the messages. But when it comes
to non linear operations on the samples, TLWE seems to lack some properties. To
remedy, several schemes based on the di�erent variants of LWE have been proposed.
Between them, the most known solutions are the BGV constructions [BGV12] and
the GSW constructions [GSW13], described in Chapter 2. The TFHE scheme is based
on the latter construction and on the improvements proposed in [AP14] and [DM15].
To follow the same footstep as in the previous section, we start by abstracting and
generalizing the GSW problem over the torus. We call this version TGSW: it is scale
invariant and it includes both the scalar and the ring modes. The scheme relies
on a gadget decomposition function: the novelty we propose in our construction is
that our decomposition function performs an approximate decomposition, up to some
precision parameter. This allows to improve running time and memory requirements
for a small amount of additional noise.
We give the abstract de�nition of the gadget decomposition and of the TGSW
construction. Then, as we did for TLWE, we concentrate on the canonical de�nitions,

8Talking about maximum amplitude is still an abuse of notation. As we said in Remark 3.1.3,
a more correct approach would be to use a truncated distribution.

34

3.2 The Learning With Errors problem revisited

which are the ones necessary to the comprehension of the TFHE scheme and of all
the ideas behind.

Observe that, if we decompose with respect to a gadget H, the �inverse� operation
is the multiplication between the decomposed vector and the gadget H itself, which
is linear.

De�nition 3.2.6 (Abstract Gadget Decomposition). Let M be a R-module (as in
De�nition 3.2.2). We say that an e�cient algorithm DecH,β,ε(v) is a valid decom-
position on the gadget H ∈ M `′ with quality β ∈ R>0 and precision ε ∈ R>0 if and
only if, for any (abstract) TLWE sample v ∈M , it e�ciently and publicly outputs a
small vector u ∈ R`′ such that ‖u‖∞ ≤ β and ‖u ·H − v‖∞ ≤ ε. Furthermore, the
expectation of u ·H −v must to be equal to 0 when v is uniformly distributed in M .

To �x the ideas, we give an e�cient (canonical) example of gadget decomposition,
whose purpose is to decompose TLWE ciphertexts: this is the one used in TFHE.
We �x the module M = TN [X]k×TN [X]. The gadget is a block diagonal matrix on
which each column-block on the diagonal contains a geometric decreasing sequence of
constant polynomials in T ⊆ TN [X], and the corresponding decomposition function
is the greedy algorithm. Decomposing with respect to a super-decreasing/increasing
basis is an easy operation. A trivial every-day-life example is the decomposition in
euros. We are able to easily pay in cash when we go on the supermarket, because
we are able to decompose the amount of money we have to pay with respect to the
base composed by the di�erent banknote/coin denominations.
In theory, decomposition algorithms should be randomized to ensure that the dis-
tribution of all error coe�cients remain independent. In practice, our average case
theorems already rely on an independence Heuristic 3.2.1 that we describe later in
this section, which explains why we use a deterministic canonical decomposition.

Lemma 3.2.1 (Gadget Decomposition). Let the module M = TN [X]k+1 be the
domain of TLWE, and ` and Bg (called the base of the gadget) be two positive
integers. The (canonical) gadget is the list of `′ = (k + 1)` rows of the matrix
H ∈M(k+1)`,k+1(TN [X]) as in (3.1).

H =

1/Bg . . . 0
...

. . .
...

1/B`
g . . . 0

...
. . .

...
0 . . . 1/Bg
...

. . .
...

0 . . . 1/B`
g

∈M(k+1)`,k+1(TN [X]). (3.1)

Then for β = Bg
2

and ε = 1
2B`g

, Algorithm 1 is a valid DecH,β,ε.

35

Chapter 3. LWE and GSW over the Torus

Algorithm 1 Gadget Decomposition of a TLWE sample

Input: A TLWE sample (a, b) = (a1, . . . , ak, b = ak+1) ∈ TN [X]k × TN [X]
Output: A combination [u1,1, . . . , uk+1,`] ∈ ZN [X](k+1)`

1: For each ai choose the unique representative
∑N−1

j=0 ai,jX
j, with ai,j ∈ T, and

set āi,j the closest multiple of 1
B`g

to ai,j

2: Decompose each āi,j uniquely as
∑`

p=1 āi,j,p
1
Bpg

where each āi,j,p ∈ J−Bg/2, Bg/2J
3: for i = 1 to k + 1
4: for p = 1 to `
5: ui,p =

∑N−1
j=0 āi,j,pX

j ∈ ZN [X]
6: Return (ui,p)i,p

Proof. Let v = (a, b) = (a1, . . . , ak, b = ak+1) ∈ TN [X]k+1 be a TLWE sample, given
as input to Algorithm 1. Let u = [u1,1, . . . , uk+1,`] ∈ ZN [X](k+1)` be the correspond-
ing output: by construction ‖u‖∞ ≤ Bg/2 = β.
Let εdec = u ·H−v. For all i ∈ J1, k+1K and j ∈ J0, N−1K, we have by construction

εdeci =
∑̀

p=1

ui,p ·
1

Bp
g
− ai =

N−1∑

j=0

(āi,jX
j)− ai

and so
εdeci,j = āi,j − ai,j.

Since āi,j is de�ned as the nearest multiple of 1
B`g

on the torus, we have |āi,j − ai,j| ≤
1

2B`g
= ε.

The decomposition error εdec has therefore a concentrated distribution when v is
uniform. We now verify that it is zero-centered. We call f the function from T to
T which rounds an element x to its closest multiple of 1

B`g
and g the (symmetry)

function de�ned by g(x) = 2f(x) − x on the torus. We can easily verify that the
E(εdeci,j) is equal to E(ai,j − f(ai,j)) when ai,j has uniform distribution, which is
equal to E(g(ai,j) − f(g(ai,j))) when g(ai,j) has uniform distribution, also equal to
E(f(ai,j)− ai,j) = −E(εdeci,j). Thus, the expectation of εdec is 0.

We are now ready to de�ne (abstract) TGSW samples, and to extend the notions
of phase of valid sample, message and error of the samples. Observe that, while
in TLWE samples the messages were torus polynomials of TN [X], here we encrypt
integer polynomials in ZN [X].

De�nition 3.2.7 (Abstract TGSW samples). Consider the TLWE cryptosystem of
error distribution X and of secret phase ϕs on the R-module M , and its associated
gadget decomposition DecH,β,ε over H ∈M `′. We say that C ∈M `′ is a fresh TGSW
sample of µ ∈ R if and only if C = Z + µ ·H where each element of Z ∈M `′ is an
Homogeneous TLWE sample (of 0) and error X .

36

3.2 The Learning With Errors problem revisited

Reciprocally, we say that an element C ∈M `′ is a valid TGSW sample for the key s
if and only if there exists a unique polynomial µ ∈ R (modulo H ·R), such that each
row of C−µ ·H is a valid TLWE sample of 0 for the key s. We call the polynomial µ
the message of C, and we denote it by msg(C). By extension, the phase of C denoted

as ϕs(C) ∈ TI [X]`
′
is the vector of the `′ TLWE phases of each line of C. In the

same way, we de�ne the error of C, denoted Err(C), as the list of the `′ TLWE errors
of each row of C.

As we did for TLWE samples, we give the (canonical) de�nitions of TGSW samples,
which is the one used in the TFHE scheme. If one instantiate the previous de�nition
with the TLWE samples from De�nition 3.2.3 and the decomposition algorithm from
Lemma 3.2.1, one obtains the (canonical) TGSW samples over TN [X](k+1)`, of binary
key s ∈ BN [X]k, and Gaussian error of standard deviation σ.
Fresh TGSW samples of a message µ ∈ ZN [X] are denoted TGSWs,σ(µ). Since TGSW
samples are essentially vectors of TLWE samples, they are naturally compatible with
linear combinations, and both phase and message functions remain linear.

De�nition 3.2.8 (TGSW samples). Let ` and k ≥ 1 be two integers, σ ≥ 0 be
a standard deviation and H the gadget de�ned in Equation (3.1). Let s ∈ BN [X]k

be a TLWE key, we say that C ∈ M(k+1)`,k+1(TN [X]) is a fresh TGSW sample of
µ ∈ ZN [X] with standard deviation σ if and only if C = Z + µ ·H where each row
of Z ∈ M(k+1)`,k+1(TN [X]) is an Homogeneous TLWE sample (of 0) with Gaussian
standard deviation σ (De�nition 3.2.3).
Reciprocally, we say that an element C ∈ M(k+1)`,k+1(TN [X]) is a valid TGSW
sample if and only if there exists a unique polynomial µ ∈ ZN [X] and a unique key
s such that each row of C−µ ·H is a valid TLWE sample of 0 for the key s. We call
the polynomial µ the message of C, and we denote it by msg(C).

We now de�ne the phase and the error for TGSW. As a TGSW ciphertext is a list of
TLWE encryptions, the phase and the error are the list of phases and errors of each
of the composing TLWE ciphertexts.

De�nition 3.2.9 (Phase and Error). Let C ∈ M(k+1)`,k+1(TN [X]) be a TGSW
sample for a secret key s ∈ BN [X]k and standard deviation σ ≥ 0.
We de�ne the phase of C, denoted as ϕs(C) ∈ TN [X](k+1)`, as the list of the (k+1)`
TLWE phases of each line of C. In the same way, we de�ne the error of C, denoted
Err(C), as the list of the (k + 1)` TLWE errors of each line of C.

As a consequence, the phase is still (1 + kN)-lipschitzian for the in�nity norm.

Remark 3.2.3. For all C ∈Mp,k+1(TN [X]), ‖ϕs(C)‖∞ ≤ (1 + kN)‖C‖∞.

Finally, we observe the noise amplitude and variance growth, when many TGSW
samples are linearly combined.

37

Chapter 3. LWE and GSW over the Torus

Remark 3.2.4. Given p valid TGSW samples C1, . . . , Cp of messages µ1, . . . , µp
under the same key, and with independent error coe�cients, and given p integer
polynomials e1, . . . , ep ∈ fR, the linear combination C =

∑p
i=1 ei · Ci is a TGSW

sample of µ =
∑p

i=1 ei · µi, with

• Variance: Var(C) = (
∑p

i=1 ‖ei‖2
2 · Var(Ci))

1/2
,

• Noise amplitude: ‖Err(C)‖∞ =
∑p

i=1 ‖ei‖1 · ‖Err(Ci)‖∞.

Heuristic

A natural question that comes to mind is what happens to the distribution of the
samples that have been linearly combined. In the worst-case, the behaviour is prov-
able, while the average case is less clear.
In order to characterize the average case behaviour of our homomorphic operations,
we shall rely on the independence heuristic Assumption 3.2.1. This heuristic will
only be used for practical average-case bounds: our worst-case theorems and lemmas
based on the in�nite norm do not use it at all.

Assumption 3.2.1 (Independence Heuristic). All the coe�cients of the errors of
TLWE or TGSW samples that occur in all the linear combinations we consider are
independent and concentrated. More precisely, they are σ-SubGaussian where σ is
the standard deviation.

This assumption allows us to bound the variance of the noise instead of its norm,
and to provide realistic average-case bounds which often correspond to the square
root of the worst-case ones. The error can easily be proved SubGaussian, since each
coe�cients are always obtained by involving Gaussians or zero-centered bounded
uniform distributions. What remains heuristic is the independence between all the
coe�cients. Indeed, dependencies between coe�cients may a�ect the variance of
their combinations in both directions. The independence of coe�cients can be proved
if we add enough entropy in the decomposition algorithm (and if we increase all the
other parameters to compensate), but as noticed in [DM15], this work-around seems
just to be a proof artifact, and is experimentally not needed. Since our average-case
corollaries should re�ect practical results, we leave the independence of SubGaussian
samples as a heuristic assumption.
This independence assumption has been experimentally validated by the TFHE
implementation: in Chapter 6 we give more details on the subject.

3.2.3 Products

The interest of using TGSW samples instead of just TLWE samples is that we can
perform an internal product on TGSW, instead of just linear combinations. In fact,
linear operations are not su�cient to achieve Fully Homomorphic Encryption. The

38

3.2 The Learning With Errors problem revisited

original de�nition of GSW in [GSW13] proposed a construction to achieve a ho-
momorphic internal product between the integer messages of two GSW ciphertexts
(which live in the ring ZN [X]). As already described in Chapter 2, the product is
performed by decomposing one of the two ciphertexts with respect to the gadget,
and by multiplying this decomposition with the other ciphertext. The choice of the
ciphertext to decompose does not change the �nal decrypted result but can pro-
duce di�erent noise amounts in the resulting ciphertext. Thus, the GSW product is
asymmetric in the sense of the noise propagation, as already noticed in [GVW15],
[BV14b] and [AP14], and GSW ciphertexts are particularly suited to evaluate long
chains of products, or branching programs. In [BP16] and [CGGI16a], the authors
noticed that for these circuits, a large part of the computations in the GSW internal
product was subsequently unused, if the �nal goal was just to decrypt the message.
Not performing these computations yields a huge polynomial speed-up.
In this section, we provide an intrinsic explanation for the correctness of these par-
tial computations, by de�ning a TLWE external product between a TGSW ciphertext
and a TLWE sample, corresponding in clear to the external ZN [X]-module product
between the two plaintexts (i.e and integer polynomial in ZN [X] and a torus poly-
nomial in TN [X] respectively). Then, we provide a direct comparison between the
external [GSW13, AP14, GINX14, DM15] and internal products, by re-de�ning the
internal product as a list of `′ = (k + 1)` independent external products. For both
products, we analyze the noise growth in the worst and average cases.

De�nition 3.2.10 (External product). We de�ne the product � as

� : TGSW × TLWE −→ TLWE

(A,b) 7−→ A� b = DecH,β,ε(b) · A,

where DecH,β,ε is the gadget decomposition described in Algorithm 1.

The formula is almost identical to the classical product de�ned in the original GSW
scheme in [GSW13], except that only one vector needs to be decomposed. For this
reason, the following theorem shows that we get almost the same noise propaga-
tion formula, with an additional term that comes from the approximations in the
decomposition.

Theorem 3.2.1 (Worst-case External Product). Let A be a valid TGSW sample of
message µA and let b be a valid TLWE sample of message µb. Then A�b is a TLWE
sample of message µA · µb and

‖Err(A� b)‖∞ ≤ (k + 1)`Nβ‖Err(A)‖∞ + ‖µA‖1(1 + kN)ε+ ‖µA‖1‖Err(b)‖∞

in the worst case, where β and ε are the parameters used in the decomposition
Dech,β,ε(b). If ‖Err(A� b)‖∞ ≤ 1/4 we are guaranteed that A� b is a valid TLWE
sample.

39

Chapter 3. LWE and GSW over the Torus

Proof. As A = TGSW(µA), then by de�nition it is equal to A = ZA + µA ·H, where
ZA is a TGSW encryption of 0 and H is the gadget matrix. In the same way, as
b = TLWE(µb), then by de�nition it is equal to b = zb + (0, µb), where zb is a
TLWE encryption of 0. Let

{
‖Err(A)‖∞ = ‖ϕs(ZA)‖∞ = ηA

‖Err(b)‖∞ = ‖ϕs(zb)‖∞ = ηb.

Let u = DecH,β,ε(b) ∈ ZN [X](k+1)`. By de�nition A� b is equal to

A� b = u · A
= u · ZA + µA · (u ·H).

From Lemma 3.2.1, we have that u ·H = b+εdec, where ‖εdec‖∞ = ‖u ·H − b‖∞ ≤
ε. So

A� b = u · ZA + µA · (b + εdec)

= u · ZA + µA · εdec + µA · zb + (0, µA · µb).

Then the phase (linear function) of A� b is

ϕs(A� b) = u · Err(A) + µA · ϕs(εdec) + µA · Err(b) + µAµb.

Taking the expectation, we get thatmsg(A�b) = 0+0+0+µAµb, and so Err(A�b) =
ϕs(A� b)− µAµb. Then thanks to Remark 3.2.3, we have

‖Err(A� b)‖∞ ≤ ‖u · Err(A)‖∞ + ‖µA · ϕ(εdec)‖∞ + ‖µA · Err(b)‖∞
≤ (k + 1)`NβηA + ‖µA‖1(1 + kN)‖εdec‖∞ + ‖µA‖1ηb.

The result follows.

We similarly obtain the more realistic average-case noise propagation, based on
the independence heuristic Assumption 3.2.1, by bounding the Gaussian variance
instead of the amplitude.

Corollary 3.2.1 (Average-case External Product). Under the same conditions of
Theorem 3.2.1 and under Heuristic 3.2.1, we have that

Var(Err(A� b)) ≤ (k + 1)`Nβ2Var(Err(A)) + (1 + kN)‖µA‖2
2ε

2 + ‖µA‖2
2Var(Err(b)).

Proof. Let ϑA = Var(Err(A)) = Var(ϕs(ZA)) and ϑb = Var(Err(b)) = Var(ϕs(zb)).
By using the same notations as in the proof of theorem 3.2.1 we have that the error
of A � b is Err(A � b) = u · Err(A) + µA · ϕs(εdec) + µA · Err(b) and thanks to
Assumption 3.2.1 and Remark 3.2.3, we have :

Var(Err(A� b)) ≤ Var(u · Err(A))) + Var(µA · ϕ(εdec)) + Var(µA · Err(b))

≤ (k + 1)`Nβ2ϑA + (1 + kN)‖µA‖2
2ε

2 + ‖µA‖2
2ϑb.

40

3.2 The Learning With Errors problem revisited

The last corollary describes exactly the classical internal product between two TGSW
samples, already presented in [GSW13, AP14, GINX14, DM15] with adapted nota-
tions. As we mentioned before, it consists in (k + 1)` independent computations of
the external product �. As for the external product, we analyze the noise growth in
both worst and average case.

Corollary 3.2.2 (Internal Product). Let the product

� : TGSW × TGSW −→ TGSW

(A,B) 7−→ A�B =

A� b1
...

A� b(k+1)`

 =

DecH,β,ε(b1) · A
...

DecH,β,ε(b(k+1)`) · A

 ,

with A and B two valid TGSW samples of messages µA and µB respectively and
bi corresponding to the i-th line of B. Then A � B is a TGSW sample of message
µA · µB and

‖Err(A�B)‖∞ ≤ (k + 1)`Nβ‖Err(A)‖∞ + ‖µA‖1(1 + kN)ε+ ‖µA‖1‖Err(B)‖∞
in the worst case. If ‖Err(A�B)‖∞ ≤ 1/4 we are guaranteed that A� B is a valid
TGSW sample.
Furthermore, by assuming the heuristic 3.2.1, we have that

Var(Err(A�B)) ≤ (k + 1)`Nβ2Var(Err(A)) + (1 + kN)‖µA‖2
2ε

2 + ‖µA‖2
2Var(Err(b))

in the average case.

Proof. Let A and B be two TGSW samples, and µA and µB their message. Let hi

denote the i-th row of the gadget matrix H. By de�nition, the i-th row of B encodes
µB ·hi, so the i-th row of A�B encodes (µAµB) ·hi. This proves that A�B encodes
µAµB. Since the internal product A � B consists in (k + 1)` independent runs of
the external products A � bi, the noise propagation formula directly follows from
Theorem 3.2.1 and Corollary 3.2.1.

3.2.4 CMux gate

With the homomorphic operations described until now, i.e. the linear combinations
and the products, it is possible to construct small homomorphic circuits. To ease
these constructions, we now de�ne the controlled selector gate (or CMux gate, where
C stands for controlled), which can be considered as the bridge between the external
product arithmetic, and high level circuits. The classical MUX gate (Figure 3.5) has
3 input bits, c, d0 and d1, and it selects one value between d0 and d1 depending on
the value of the selector bit c. It is generally noted by the formula c?d1:d0.
The CMux gate (Figure 3.6) is the homomorphic version of the traditional MUX gate.
As this latter, it has three input slots and one output slot: one control input slot

41

Chapter 3. LWE and GSW over the Torus

0

1

c

d0

d1

c?d1:d0

Figure 3.5: MUX gate - depending on the value of the selector bit c, it chooses between
d0 and d1.

represented by a TGSW sample on the integer message space (here restricted to
{0, 1}), two data input slots each carrying a TLWE sample on the continuous mes-
sage space TN [X], and one data output slot, also of type TLWE. The controlled MUX

gate CMux(C,d1,d0) homomorphically outputs either the message of d1 or d0 de-
pending on the Boolean value in C, without decrypting any of the three cipertexts.
In practice, it returns

CMux(C,d1,d0) = C � (d1 − d0) + d0.

In leveled circuits, the rule to build valid circuits using CMux gates is that all control
wires (TGSW) are freshly generated by the user, and the data input ports of our
gates can be either freshly generated or connected to a data output of another gate.
Observe that, if we use the internal product instead of the external one in the con-
struction of CMux gates, they are composable (inputs and outputs are all TGSW
ciphertexts). On the other hand, they are slower than external product CMux gates
and the noise reduction via bootstrapping on TGSW ciphertexts is very costly. In-
stead, in Chapter 5, we propose an e�cient way to transform a TLWE sample in a
TGSW sample, in order to make the circuits entirely composable (and so relax the
condition requiring freshly generated control wires).
In the following, unless speci�ed, the CMux gates we use are constructed only with
the external product.
We now analyze the noise growth after the evaluation of a CMux gate.

Lemma 3.2.2 (CMux gate). Let d0,d1 ∈ TLWEs(TN [X]) and C ∈ TGSWs({0, 1}).
Then msg(CMux(C,d1,d0)) = msg(C)?msg(d1):msg(d0). Furthermore

• ‖Err(CMux(C,d1,d0))‖∞ ≤ max(‖Err(d0)‖∞, ‖Err(d1)‖∞) + η(C),

• Var(Err(CMux(C,d1,d0))) ≤ max(Var(Err(d0)),Var(Err(d1))) + ϑ(C), in the
conditions of Assumption 3.2.1,

where η(C) = (k + 1)`Nβ‖Err(C)‖∞ + (kN + 1)ε and ϑ(C) = (k +
1)`Nβ2Var(Err(C)) + (kN + 1)ε2.

42

3.2 The Learning With Errors problem revisited

TGSW
µC

ηC , ϑC

TLWE
µd0

ηd0 , ϑd0

TLWE
µd1

ηd1 , ϑd1

0

1
TLWE

µ = µC · (µd1 − µd0) + µd0

η = max(ηd0 , ηd1) +O(ηC)
ϑ = max(ϑd0 , ϑd1) +O(ϑC)

Figure 3.6: CMux gate - The CMux gate takes in input a TGSW sample C with
message µC, a TLWE sample d0 with message µd0 and a TLWE sample d1 with
message µd1. It outputs a TLWE sample with message µ = µC · (µd1 − µd0) + µd0.
The η's and ϑ's represent respectively the noise in the worst and average case, for
both the inputs and the output.

Proof. The formulas for the noise in the worst and average cases are a consequence
of Theorem 3.2.1 and Corollary 3.2.1. However, we need to explain why there is
a max instead of the sum we would obtain by blindly applying these results. Let
d = d1 − d0, recall that in the proof of Theorem 3.2.1, the expression of C � d
is DecH,β,ε(d) · ZC + µCεdec + µCzd + (0, µC · µd), where C = ZC + µC · H and
d = zd + (0, µd), ZC and zd are respectively TGSW and TLWE samples of 0, and
‖εdec‖∞ ≤ ε. Thus, CMux(C,d1,d0) is the sum of four terms:

• DecH,β,ε(d) · ZC of norm ≤ (k + 1)`NβηC ;

• µCεdec of norm ≤ (kN + 1)ε;

• zd0 + µC(zd1 − zd0), which is either zd1 or zd0 , depending on the value of µC ;

• (0, µd0 + µC · (µd1 − µd0)), which is the trivial sample of the output message
µC?µd1 :µd0 , and is not part of the noise.

Thus, summing the three terms concludes the proof. For the average case, the for-
mula is proven in the same way by using the results of Corollary 3.2.1 and replacing
all norm inequalities by variance inequalities.

Notations

The goal of this chapter was to be as general as possible, so we used the notations
TLWE and TGSW to include all the instances and prove their properties once and
for all. In the rest of the manuscript instead, the notation TLWE is used to de-
note the canonical scalar TLWE problem (i.e. the scale invariant LWE problem from
De�nition 3.2.1). To distinguish it from the Ring mode, we introduce the notation
TRLWE. The TGSW samples are only used in ring mode, but we use the notation
TRGSW to keep uniformity with the TRLWE notation.

43

Chapter 3. LWE and GSW over the Torus

In order to explicit and keep track of the techniques we introduce all along the
manuscript, we use Figure 3.7 and we update it every time a new technique is de-
scribed. The �gure will represent all the morphisms and operations that can be
performed between the di�erent plaintext spaces. From a high level prospective, all
these plaintext operations have an homomorphic equivalent over ciphertexts. This
way, it is enough to reason on the plaintext to design complex homomorphic appli-
cations. The small circles placed on the bottom right of the message spaces indicate
the internal operations that can be performed inside the speci�c message spaces.
The arrows instead indicate the operations between di�erent plaintext spaces.

Message Ciphertext Secret key
TLWE T Tn+1 Bn
TRLWE TN [X] TN [X]k+1 BN [X]k

TRGSW ZN [X] ((k + 1)`)-vector of TRLWE BN [X]k

TLWE T
+

TRLWE TN [X]
+

TRGSW ZN [X]

+,�

Z

External TRLWE
product �
(and CMux)

Figure 3.7: Homomorphic operations: view from the message spaces.

Furthermore, we distinguish the TLWE keys from the TRLWE keys by using the
respective notations K and K, instead of the generic s used until now. We also use
the following convention in the rest of the manuscript: for all n = kN , a binary
vector K ∈ Bn can be interpreted as a TLWE key, or alternatively as a TRLWE key
K ∈ BN [X]k having the same sequence of coe�cients.
Namely, Ki is the polynomial

∑N−1
j=0 KN(i−1)+j+1X

j. In this case, we say that K is
the TRLWE interpretation of K, and K is the TLWE interpretation of K:

44

3.2 The Learning With Errors problem revisited

K1 = K1 K2 K3
. . . KN−1 KN

Figure 3.8: Double interpretation of the keys K and K: the example shows the
TRLWE key polynomial K1 as a container for the �rst N bits of the TLWE key K.

TLWE key TRLWE key
K ∈ Bn ∼ K ∈ BN [X]k

(K1, . . . ,Kn) (K1, . . . , Kk) such that Ki =
∑N−1

j=0 KN(i−1)+j+1X
j

This interpretation is quite natural, as polynomials can be seen as coe�cient con-
tainers (Figure 3.8). The same idea is also used and better detailed in following
chapters.

45

Chapter 3. LWE and GSW over the Torus

46

Chapter 4

TFHE: building blocks and leveled

constructions

In the previous chapters, we introduced the bases for the construction of TFHE, by
re-formalizing and generalizing LWE and GSW over the torus (TLWE and TGSW).
We also described the basic operations (linear combinations, products and the CMux
homomorphic gate) that can be homomorphically performed on ciphertexts. In
this chapter, we construct at �rst some building blocks, starting from these basic
operations, and then we explain how to use them to build more complex leveled
homomorphic constructions.

In our construction, we rede�ne the concept of levels. In previous works, the number
of levels corresponded in general to the multiplicative depth of the function/circuit
to be homomorphically evaluated. In our case, the number of levels corresponds
instead to the number of compositions of automata.

4.1 Building blocks for TFHE

In this section we describe three homomorphic building blocks, constructed by using
the basic operations described in Chapter 3.
The �rst building block is the key switching. This technique has been introduced for
the second generation of homomorphic schemes, and largely used in the following.
The key switching we describe is a re-visitation of the original technique. We observe
that it can be used not only to switch from a key to another in di�erent parameter
sets, but also to homomorphically evaluate lipschitzian morphisms of Z-modules
f : Tp → TN [X]. Furthermore, the morphisms can be public or private, which
makes us distinguish two kinds of di�erent key switchings.
The second building block is the sample extraction: TRLWE ciphertexts encrypt torus
polynomials and they can be seen as homomorphic containers. The sample extraction
is the operation allowing to extract one of the coe�cients from the container. It can

47

Chapter 4. TFHE: building blocks and leveled constructions

be seen also as the inverse operation to the key switching.
The third building block we describe is the blind rotation. As the name says, it
consists in a rotation of the coe�cients inside the TRLWE container by an encrypted
amount of positions. This can be done thanks to the external product and the CMux
gate.
Each one of them is described in detail in next sections.

4.1.1 Key Switching revisited

We revisit the well-known key-switching procedure, largely described in the liter-
ature. The principal interest of key switching, as the name suggests, is to switch
between keys in di�erent parameter sets.
We show that this procedure has a larger potential. It allows to switch between the
scalar and polynomial message spaces T and TN [X], and more generally, it has the
ability to homomorphically evaluate linear morphisms f from any Z-module Tp to
TN [X]. We de�ne two key-switching �avors, one for a publicly known f , and one for
a secret f encoded in the key-switching key.
In the following, we denote PublicKS(f,KS, c) and PrivateKS(KS(f), c) the output of
Algorithm 2 and Algorithm 3, taking in input the functional key-switching keys KS
and KS(f) respectively and a TLWE ciphertext c.
As the inputs and the outputs are instantiated with di�erent parameter sets and we
want to keep the same name for the variables n,N, `, Bg, . . . , we add an under bar
to the output parameters to distinguish them from the input parameters.
From now on, we use the letter γ to indicate the standard deviation of the key-
switching key, instead of the letter σ. The variable t represents the precision of the
binary decomposition.

Algorithm 2 TLWE-to-T(R)LWE Public Functional Key Switching

Input: p TLWE ciphertexts c(z) = (a(z), b(z)) ∈ TLWEK(µz) for z = 1, . . . , p, a public
R-lipschitzian morphism f : Tp → TN [X], and KSi,j ∈ T(R)LWEK(Ki

2j
).

Output: A T(R)LWE sample c ∈ T(R)LWEK(f(µ1, . . . , µp))
1: for i ∈ J1, nK do
2: Let ai = f(a

(1)
i , . . . , a

(p)
i)

3: Let ãi be the closest multiple of 1
2t
to ai, thus ‖ãi − ai‖∞ < 2−(t+1)

4: Binary decompose each ãi =
∑t

j=1 ãi,j · 2−j where ãi,j ∈ BN [X]
5: end for
6: return (0, f(b(1), . . . , b(p)))−∑n

i=1

∑t
j=1 ãi,j · KSi,j

Theorem 4.1.1. (Public Key Switching) Given p TLWE ciphertexts c(z) ∈
TLWEK(µz), a public R-lipschitzian morphism f : Tp → TN [X] of Z-modules, and

48

4.1 Building blocks for TFHE

KSi,j ∈ T(R)LWEK,γ(
Ki
2j

) with standard deviation γ, Algorithm 2 outputs a T(R)LWE

sample c ∈ T(R)LWEK(f(µ1, . . . , µp)) such that:

• ‖Err(c)‖∞ ≤ R‖Err(c)‖∞ + ntNAKS + n2−(t+1) (worst case),

• Var(Err(c)) ≤ R2Var(Err(c)) + ntNϑKS + n2−2(t+1) (average case),

where AKS and ϑKS = γ2 are respectively the amplitude and the variance of the error
of KS.

Proof. Let c be the output of Algorithm 2 and b = f(b(1), . . . , b(p)) then

ϕK(c) = b−
n∑

i=1

t∑

j=1

ãi,j · ϕK(KSi,j)

= b−
n∑

i=1

t∑

j=1

ãi,j(
Ki
2j
− Err(KSi,j))

= b−
n∑

i=1

Kiãi −
n∑

i=1

t∑

j=1

ãi,jErr(KSi,j)

= b−
n∑

i=1

Kiai −
n∑

i=1

t∑

j=1

ãi,jErr(KSi,j) +
n∑

i=1

Ki · (ai − ãi)

= f(b(1), . . . , b(p))−
n∑

i=1

f(a
(1)
i , . . . , a

(p)
i)Ki

−
n∑

i=1

t∑

j=1

ãi,jErr(KSi,j) +
n∑

i=1

Ki · (ai − ãi)

= f

(
(b(1), . . . , b(p))−

n∑

i=1

Ki(a
(1)
i , . . . , a

(p)
i)

)

−
n∑

i=1

t∑

j=1

ãi,jErr(KSi,j) +
n∑

i=1

Ki · (ai − ãi)

= f(ϕK(c(1)), . . . , ϕK(c(p)))−
n∑

i=1

t∑

j=1

ãi,jErr(KSi,j) +
n∑

i=1

Ki · (ai − ãi)

Applying the expectation on each side, we obtain msg(c) on the left, and
f(µ1, . . . , µp) on the right, since all the error terms have expectation 0 and f is
linear. For the worst-case bound, we obtain that:

‖Err(c)‖∞ = ‖ϕK(c)−msg(c)‖∞
≤ ‖f(Err(c(1)), . . . ,Err(c(p)))‖∞ + ntNAKS +Nn2−(t+1)

≤ R‖Err(c)‖∞ + ntNAKS +Nn2−(t+1)

49

Chapter 4. TFHE: building blocks and leveled constructions

since f is R-lipschitzian. For the average-case, we have a similar proof:

Var(Err(c)) = Var(ϕK(c)−msg(c))

≤ Var(f(Err(c(1)), . . . ,Err(c(p)))) + ntNϑKS +Nn2−2(t+1)

≤ R2Var(Err(c)) + ntNϑKS +Nn2−2(t+1).

Remark 4.1.1. The TLWE-to-T(R)LWE public key-switching procedure we de-
scribed, allows to switch between the scalar message space T and the polynomial
message space TN [X]. The same procedure can be used to perform a TLWE-to-TLWE
public key switching and switch between scalar message spaces. Here is why we put
parentheses around the R of T(R)LWE. In practice, the key-switching key is composed
by TLWE encryptions of the old secret key, and the noise growth formulas remain
the same, with the factor N equal to 1.
Furthermore, observe that the public key-switching procedure can be used from
TRLWE to TRLWE: in this case the function f is just the identity function.

We have a similar result when the function is private. In this algorithm, we extend
the input secret key K by adding a (n+1)-th coe�cient equal to −1, so that ϕK(c) =
−K · c.

Algorithm 3 TLWE-to-T(R)LWE Private Functional Key Switching

Input: p TLWE ciphertexts c(z) ∈ TLWEK(µz), a key-switching key KS
(f)
z,i,j ∈

T(R)LWEK(f(0, . . . , 0, Ki
2j
, 0, . . . , 0)) where f : Tp → TN [X] is a secret R-

lipschitzian morphism and Ki
2j

is at position z (also, Kn+1 = −1 by convention).
Output: A T(R)LWE sample c ∈ T(R)LWEK(f(µ1, . . . , µp)).
1: for i ∈ J1, n+ 1K, z ∈ J1, pK do
2: Let c̃(z)

i be the closest multiple of 1
2t
to c

(z)
i , thus |c̃(z)

i − c
(z)
i | < 2−(t+1)

3: Binary decompose each c̃(z)
i =

∑t
j=1 c̃

(z)
i,j · 2−j where c̃(z)

i,j ∈ {0, 1}
4: end for
5: return −∑p

z=1

∑n+1
i=1

∑t
j=1 c̃

(z)
i,j · KS(f)

z,i,j

Theorem 4.1.2. (Private Key Switching) Given p TLWE ciphertexts c(z) ∈
TLWEK(µz), and KS

(f)
i,j ∈ T(R)LWEK,γ(f(0, . . . , Ki

2j
, . . . , 0)) where f : Tp → TN [X]

is a private R-lipschitzian morphism of Z-modules, Algorithm 3 outputs a T(R)LWE
sample c ∈ T(R)LWEK(f(µ1, . . . , µp)) such that:

• ‖Err(c)‖∞ ≤ R‖Err(c)‖∞ + (n+ 1)R2−(t+1) + pt(n+ 1)AKS (worst-case),

• Var(Err(c)) ≤ R2Var(Err(c)) + (n+ 1)R22−2(t+1) + pt(n+ 1)ϑKS (average case),

50

4.1 Building blocks for TFHE

where AKS and ϑKS = γ2 are respectively the amplitude and the variance of the error

of KS(f).

Proof. Let c be the output of Algorithm 3 and b = f(b(1), . . . , b(p)) then:

ϕK(c) = −
p∑

z=1

n+1∑

i=1

t∑

j=1

c̃
(z)
i,j · ϕK(KS

(f)
z,i,j)

= −
p∑

z=1

n+1∑

i=1

t∑

j=1

c̃
(z)
i,j

(
f(0, . . . ,

Ki
2j
, . . . , 0) + Err(KS

(f)
i,j)

)

= −
p∑

z=1

n+1∑

i=1

t∑

j=1

c̃
(z)
i,j f(0, . . . ,

Ki
2j
, . . . , 0)−

p∑

z=1

n+1∑

i=1

t∑

j=1

c̃
(z)
i,j Err(KS

(f)
z,i,j)

We set εKS =
∑p

z=1

∑n+1
i=1

∑t
j=1 c̃

(z)
i,j Err(KS

(f)
z,i,j). Then:

= −
n+1∑

i=1

p∑

z=1

f(0, . . . ,
t∑

j=1

c̃
(z)
i,j

Ki
2j
, . . . , 0)− εKS

= −
n+1∑

i=1

p∑

z=1

f(0, . . . ,Ki · c(z)
i , . . . , 0)

−
n+1∑

i=1

p∑

z=1

f(0, . . . ,Ki · (c̃(z)
i − c

(z)
i), . . . , 0)− εKS

= −
n+1∑

i=1

Kif(c
(1)
i , . . . , c

(z)
i , . . . , c

(p)
i)−

n+1∑

i=1

Kif(c̃
(1)
i − c

(1)
i , . . . , c̃

(p)
i − c

(p)
i)− εKS

= f(−
n+1∑

i=1

Kic
(1)
i , . . . ,−

n+1∑

i=1

Kic
(p)
i)−

n+1∑

i=1

Kif(c̃
(1)
i − c

(1)
i , . . . , c̃

(p)
i − c

(p)
i)− εKS

= f(ϕK(c(1)), . . . , ϕK(c(p)))−
n+1∑

i=1

Kif(c̃
(1)
i − c

(1)
i , . . . , c̃

(p)
i − c

(p)
i)− εKS

= f(µ1 + Err(c(1)), . . . , µp + Err(c(p)))

−
n+1∑

i=1

Kif(c̃
(1)
i − c

(1)
i , . . . , c̃

(p)
i − c

(p)
i)− εKS

By linearity of f and since the expectation of the error terms are 0, the message of
the right side is equal to f(µ1, . . . , µp). For the worst-case bound on the noise, as f
is R-lipschitzian, we obtain:

‖Err(c)‖∞ = ‖ϕK(c)−msg(c)‖∞
≤ R‖Err(c)‖∞ + (n+ 1)R2−(t+1) + pt(n+ 1)AKS

The proof for the variance is similar.

51

Chapter 4. TFHE: building blocks and leveled constructions

4.1.2 Sample Extraction.

It is known that a TRLWE message is a polynomial with N coe�cients, which can
be viewed as a container with N slots over T, as shown in Figure 4.1.

TRLWE message µ =
N−1∑

i=0

µi ·X i ∈ TN [X] ∼ µ = (µ0, µ1, . . . , µN−1) ∈ TN

µ = µ0 µ1 µ2 . . . µN−2 µN−1

Figure 4.1: TRLWE container - composed by N slots containing a value in T.

It is easy to homomorphically extract a coe�cient as a scalar TLWE sample with
the same key. We recall that a binary TLWE key K ∈ Bn can be interpreted as a
TRLWE key K ∈ BN [X]k having the same sequence of coe�cients, and vice-versa.
Given a TRLWE sample c = (a, b) ∈ TRLWEK(µ) and a position p ∈ [0, N − 1],
we call SampleExtractp(c) the TLWE sample (a, b) where b = bp and aN(i−1)+j+1

is the (p − j)-th coe�cient of ai (using the N -antiperiodic indexes aN+i = −ai).
This extracted sample encodes the p-th coe�cient µp with at most the same noise
variance or amplitude as c.

Algorithm 4 SampleExtractp

Input: A TRLWE ciphertexts c = (a, b) ∈ TRLWEK(µ), a position p ∈ J0, N − 1K.
Output: A TLWE sample c = (a, b) ∈ TLWEK(µp).
1: Set b = bp
2: for i ∈ J1, kK, j ∈ J0, N − 1K do
3: aN(i−1)+j+1 = (ai)p−j
4: end for
5: return c = (a, b)

In the rest of the manuscript, we will simply write SampleExtract(c) when p = 0.
In Section 4.2.1, we show how the KeySwitching and the SampleExtract procedures
are used to e�ciently pack data, unpack and move data across the slots, and how it
di�ers from usual packing techniques.

4.1.3 Blind Rotate

The BlindRotate algorithm multiplies the polynomial encrypted in the input TRLWE
ciphertext by an encrypted power of X. The e�ect produced is a rotation of the
coe�cients/slots inside the TRLWE container. The algorithm consists in two parts.
The �rst one (line 1) is the rotation by a known power of X. The second one (loop

52

4.2 Leveled constructions in TFHE

at line 2) is the rotation by a secret power of X, which is performed by using the
CMux gate.

Algorithm 5 BlindRotate

Input: A TRLWEK sample c of v ∈ TN [X], p+ 1 integer coe�cients a1, . . . , ap, b ∈
Z/(2NZ), p TRGSWK samples C1, . . . , Cp of s1, . . . , sp ∈ B

Output: A TRLWEK sample of X−ρ · v where ρ = b−∑p
i=1 si.ai mod 2N

1: ACC← X−b · c
2: for i = 1 to p
3: ACC← CMux(Ci, X

ai · ACC,ACC)
4: return ACC

Theorem 4.1.3. Let H ∈ M(k+1)`,k+1(TN [X]) the gadget matrix and DecH,β,ε its
e�cient approximate gadget decomposition algorithm with quality β and precision ε.
Let α ∈ R≥0 be a standard deviation, K ∈ Bn be a TLWE secret key and K ∈ BN [X]k

be its TRLWE interpretation. Given one sample c ∈ TRLWEK(v) with v ∈ TN [X],
p + 1 integers a1, . . . , ap and b ∈ Z/2NZ, and p TRGSW ciphertexts C1, . . . , Cp,
where each Ci ∈ TRGSWK,α(si) for si ∈ B. Algorithm 5 outputs a sample ACC ∈
TRLWEK(X−ρ · v) where ρ = b−∑p

i=1 siai, such that:

• ‖Err(ACC)‖∞ ≤ ‖Err(c)‖∞ + p(k + 1)`NβAC + p(1 + kN)ε (worst case),

• Var(Err(ACC)) ≤ Var(Err(c)) + p(k + 1)`Nβ2ϑC + p(1 + kN)ε2 (average case),

where ϑC = α2 and AC are the variance and amplitudes of Err(Ci).

Proof. Theorem 4.1.3 follows from the fact that algorithm 5 calls p times the CMux
evaluation.

We de�ne BlindRotate(c, (a1, . . . , ap, b), (C1, . . . , Cp)), the procedure described in
Algorithm 5 that outputs the TRLWE sample ACC as in Theorem 4.1.3.

We can now update Figure 3.7 from last chapter with the building blocks. The
updated Figure 4.2 has an additional link between the scalar and polynomial integer
message space, that can be done via key switching, thanks to the fact that TRGSW
ciphertexts are composed by TRLWE samples.

4.2 Leveled constructions in TFHE

Now that the basic operations and building blocks are explained, we can compose
them to create more complicate constructions. Our �rst goal is to build e�cient
leveled homomorphic circuits, without any bootstrapping (the bootstrapped con-
structions are described in next chapter). We analyzed several techniques, and we

53

Chapter 4. TFHE: building blocks and leveled constructions

TLWE T
+

TRLWE TN [X]
+

TRGSW ZN [X]

+,�

Z

External TRLWE
product �
(and CMux)

PrivateKS
PublicKS

Sample
Extract

Blind
Rotate

PrivateKS

PublicKS

Figure 4.2: Homomorphic operations: view from the message spaces. The new build-
ing blocks are highlighted.

observed that there is not one �golden� technique to automatically evaluate any
function. Rather, di�erent methods exist and each one of them seems to be better
than the others depending on the function to be evaluated.
In this section we describe three methods, while in Chapter 6 we explain how to
use them in practice and we show our predictions on the execution timings.

The �rst leveled construction consists in the evaluation of an arbitrary function via
its look-up table. In this case, we propose two packing techniques that can be used
to accelerate the evaluation. Various packing techniques have already been proposed
for homomorphic encryption: the Lagrange embedding in Helib [HS14, HS17], the di-
agonal matrices encoding in [HAO15] or the CRT encoding in [SV10, SV14, BBL17].
The message space is often a �nite ring (e.g. Z/pZ), and the packing function is in
general chosen as a ring isomorphism that preserves the structure of (Z/pZ)N . This
way, elementary additions or products can be performed simultaneously on N inde-
pendent slots, and thus, packing is in general associated to the concept of batching a
single operation on multiple datasets. These techniques can have some limitations,
especially if in the whole program, each function is only run on a single dataset,
and most of the slots are unused. This is particularly true in the context of GSW
evaluations, where functions are split into many branching algorithms or automata,
that are each executed only once.

54

4.2 Leveled constructions in TFHE

In the rest of the manuscript, packing refers to the coe�cients embedding function,
that maps N TLWE messages µ0, . . . , µN−1 ∈ T into a single TRLWE message
µ =

∑N−1
i=0 µiX

i, as shown in Section 4.1.2. This function is a Z-module iso-
morphism. Messages can be homomorphically unpacked from any slot using the
(noiseless) SampleExtract procedure, described in the same section. Reciprocally,
we can repack, move data across the slots, or clear some slots by using our
public functional key switching from Algorithm 2 to evaluate respectively the
canonical coe�cient embedding function (i.e. the identity), a permutation, or
a projection. Since these functions are 1-lipschitzian, by Theorem 4.1.1, these
key-switching operations only induce an additive noise overhead. It is arguably
more straightforward than the permutation network technique used in Helib. But
as in [BBL17, CCK+13, CLT14], our technique relies on a circular security assump-
tion, even in the leveled mode since our key-switching key encrypts its own key bits1.

The second leveled construction we propose is based on the evaluation of functions
via automata. In [CGGI16a] we proposed an evaluation via deterministic �nite au-
tomata (det-FA), but we discovered in [CGGI17a] that deterministic weighted �nite
automata (det-WFA) are more e�cient. The main di�erence between the two tech-
niques is, as the name announces, the presence of weights. The DFA are decisional,
so each one of them outputs a single bit of information, while det-WFA are com-
putational. The weights act like a memory that accumulates all the bits of the �nal
result inside a TRLWE container all along the evaluation, so the result is computed
in a single pass.

We give more details on all the automata logic behind those ideas and we show a
few examples to better understand how to use all this in practice.

The third technique is a new TRLWE homomorphic counter, called TBSR. The
T comes (again) from the torus and it is used to distinguish the homomorphic
encrypted version of the counter. The BSR stands for Bit Sequence Representation
and we use it to indicate the clear version of the counter, fundamental to understand
the ideas before passing on the ciphertext space. The TBSR is able to perform
e�ciently 3 basic operations for the evaluation of arithmetic functions: extraction
of a bit, increment and division by 2.

We start by explaining the plaintext construction of the BSR and then we translate
the ideas in the ciphertext context by constructing and analyzing the TBSR.

Notice that the 3 techniques can be used independently, but they can also be com-
bined to obtain better performances.

1Circular security assumption could still be avoided in leveled mode if we accept to work with
many keys.

55

Chapter 4. TFHE: building blocks and leveled constructions

4.2.1 Arbitrary functions and Look-Up Tables

The �rst class of functions we analyze are arbitrary functions, very useful in multiple
applications. The arbitrary functions we analyze have d-bit inputs and output a
vector of s elements in the torus. The s output elements can be seen as the s
independent outputs of the sub-functions f0, . . . , fs−1 : Bd → T:

f : Bd −→ Ts

x = (x0, . . . , xd−1) 7−→ f(x) = (f0(x), . . . , fs−1(x)).

Such functions can be described with a Look-Up Table (LUT), containing the list
of all the 2d input values (each one composed by d bits) and corresponding LUT
output values for the s sub-functions (1 element in T per sub-function fj). We note
the LUT values with σj,h ∈ T, where j ∈ J0, s − 1K is the sub-function index, and
h ∈ J0, 2d − 1K is the input index.
In order to compute the function f(x) = (f0(x), . . . , fs−1(x)), where x ∈ Bd, the
classical way consists in evaluating the s sub-functions f0, . . . , fs−1 separately, as
proposed in [BV14b, CGGI16a]. Each of them consists in a binary decision tree
composed by 2d − 1 CMux gates. The total complexity of the classical evaluation
requires therefore to execute about s · 2d CMux gates. Let's call fj(x) = σj,x ∈ T
(where x =

∑d−1
i=0 xi2

i) the j-th output of f(x), for j = 0, . . . , s − 1. Figure 4.3
summarizes the idea of the computation of σj,x.

x0 . . . xd−1 f0
. . . fs−1

0 . . . 0 σ0,0 . . . σs−1,0 σj,0

1 . . . 0 σ0,1 . . . σs−1,1 σj,1

0 . . . 0 σ0,2 . . . σs−1,2 σj,2

1 . . . 0 σ0,3 . . . σs−1,3 σj,3

...
.

...
...

...
...

0 . . . 1 σ0,2d−4 . . . σs−1,2d−4 σj,2d−4

1 . . . 1 σ0,2d−3 . . . σs−1,2d−3 σj,2d−3

0 . . . 1 σ0,2d−2 . . . σs−1,2d−2 σj,2d−2

1 . . . 1 σ0,2d−1 . . . σs−1,2d−1 σj,2d−1

0

1

0

1

0

1

0

1

0

1

0

1

. . . 0

1
σj,x

fj x0 x1 . . . xd−1

Figure 4.3: LUT with CMux tree - The left part of the �gure represents the LUT
corresponding to the function f (and its sub-functions). The right part of the �gure
represents the evaluation of one sub-function fj on x = (x0, . . . , xd−1) via a CMux

binary decision tree.

56

4.2 Leveled constructions in TFHE

In the evaluation, the σj,h are given as TRLWE samples, while the d-bits x0, . . . , xd−1

are given as TRGSW ciphertexts. In this section we present two techniques, that
we call horizontal and vertical packing, that can be used to improve the evaluation
of a LUT. The packing technique is the same in both cases: the idea is to pack
N torus values inside a single TRLWE ciphertext. The names horizontal and
vertical refer to the two di�erent ways to use such packing. Intuitively, they describe
the way we pack and manipulate the LUT values in order to evaluate the function f .

Horizontal packing corresponds exactly to the classical batching. It exploits the fact
that the s sub-functions evaluate the same CMux tree, with the same inputs but with
di�erent LUT values corresponding to the s separate truth tables. For each of the 2d

possible input values, we pack the corresponding LUT values of the s sub-functions
in the �rst s slots (i.e. in the �rst s coe�cients of the torus polynomial message)
of a single TRLWE container (the remaining N − s are unused). By using a single
(2d−1)-size CMux tree to select the right ciphertext, we obtain the s slots containing
the �nal result all at once, which is overall s times faster than the classical evaluation.

On the other hand, our vertical packing is very di�erent from the batching
techniques. The basic idea is to pack several LUT values of a single sub-function in
the same ciphertext, and to use both CMux and blind rotations to select the desired
value. Unlike batching, this can also speed up functions that have only a single bit
of output.

In the following we detail these two techniques. They can be used both separately
or combined, depending on the application.

Remark 4.2.1. If the function f is public, trivial TRLWE samples of the LUT
values σj,0, . . . , σj,N−1 are used as inputs in the CMux gates. If f is private, the LUT
values σj,0, . . . , σj,N−1 are given encrypted. An analysis of the noise propagation in
the binary decision CMux tree has already been given in [GINX14] and [CGGI16a],
and can be easily retrieved by using Lemma 3.2.2.

Horizontal Packing (or Batching)

The idea of the horizontal packing is to evaluate all the outputs of the function f
together, instead of evaluating all the fj separately. This is possible by using TRLWE
samples, as the message space is TN [X]. In fact, we could encrypt up to N LUT
values σj,h (for a �xed h ∈ J0, 2d − 1K) per TRLWE sample and evaluate the binary
decision tree as described before. Figure 4.4 illustrates this classical technique.
The number of CMux gates to evaluate is d s

N
e(2d − 1). This technique is optimal if

the size s of the output is a multiple of N . Unfortunately, s is in general ≤ N and
the number of gates to evaluate remains 2d − 1. The evaluation of the function f is
then only s times faster than the non-packed approach. As not all the slots are used,

57

Chapter 4. TFHE: building blocks and leveled constructions

x0 . . . xd−1 f0
. . . fs−1

0 . . . 0 σ0,0 . . . σs−1,0

1 . . . 0 σ0,1 . . . σs−1,1

0 . . . 0 σ0,2 . . . σs−1,2

1 . . . 0 σ0,3 . . . σs−1,3

...
.

...
...

...

0 . . . 1 σ0,2d−4 . . . σs−1,2d−4

1 . . . 1 σ0,2d−3 . . . σs−1,2d−3

0 . . . 1 σ0,2d−2 . . . σs−1,2d−2

1 . . . 1 σ0,2d−1 . . . σs−1,2d−1

0

1

0

1

0

1

0

1

0

1

0

1

. . . 0

1
σ0,x . . . σs−1,x

x0 x1 . . . xd−1

Figure 4.4: Horizontal packing (or batching) - the LUT values corresponding to
every input are packed together in a single TRLWE sample (green box). The d input
bits x0, . . . , xd−1 are encrypted separately in TRGSW ciphertexts. The evaluation of
the CMux tree is done in a classical way but all the s output values σ0,x, . . . , σs−1,x

(with x =
∑d−1

i=0 xi2
i) are given in a single pass.

this technique is not optimal if s is small. The elementary Lemma 4.2.1 speci�es
the noise propagation and it follows immediately from Lemma 3.2.2 and from the
construction of the binary decision CMux tree, which has depth d.

Lemma 4.2.1 (Horizontal Packing - Batching). Let d0, . . . ,d2d−1 be TRLWE sam-
ples2 such that dh ∈ TRLWEK(

∑s
j=0 σj,hX

j) for h ∈ J0, 2d − 1K. Here the σj,h are

the LUT values relative to an arbitrary function f : Bd → Ts. Let C0, . . . , Cd−1 be
TRGSW samples, such that Ci ∈ TRGSWK(xi) with xi ∈ B (for i ∈ J0, d − 1K),
and x = (x0, . . . , xd−1). Let d be the TRLWE sample output by the f evaluation of
the binary decision CMux tree for the LUT (described in �gure 4.4). Then, using the
same notations as in lemma 3.2.2 and setting msg(d) = f(x):

• ‖Err(d)‖∞ ≤ ATRLWE + d · ((k + 1)`NβATRGSW + (kN + 1)ε) (worst case),

• Var(Err(d)) ≤ ϑTRLWE + d · ((k + 1)`Nβ2ϑTRGSW + (kN + 1)ε2) (average case),

where ATRLWE and ATRGSW are upper bounds of the in�nite norm of the errors of
the TRLWE samples ant the TRGSW samples respectively and ϑTRLWE and ϑTRGSW

are upper bounds of their variances.

2The TRLWE samples can be trivial samples, in the case where the function f and its LUT are
public.

58

4.2 Leveled constructions in TFHE

Vertical Packing

As explained in previous section, when s (number of output values of the function
f to be evaluated) is too small compared to N , the horizontal packing leaves many
unused slots on the TRLWE container. Evaluating the LUT with this improvement is
more convenient than the trivial technique, but it does not exploit the full potential
of the TRLWE container.
In order to improve the evaluation of the LUT, we propose another optimization
called Vertical Packing. As for the horizontal packing we use the TRLWE encryption
to encode N values at the same time. But now, instead of packing the LUT values
σj,h with respect to a �xed h ∈ J0, 2d − 1K, i.e. �horizontally�, we pack N values σj,h
�vertically�, with respect to a �xed j ∈ J0, s− 1K, as shown in Figure 4.5.

x0 . . . xd−1 f0
. . . fs−1

0 . . . 0 σ0,0 . . . σs−1,0

1 . . . 0 σ0,1 . . . σs−1,1

0 . . . 0 σ0,2 . . . σs−1,2

1 . . . 0 σ0,3 . . . σs−1,3

...
.

...
...

...

0 . . . 1 σ0,2d−4 . . . σs−1,2d−4

1 . . . 1 σ0,2d−3 . . . σs−1,2d−3

0 . . . 1 σ0,2d−2 . . . σs−1,2d−2

1 . . . 1 σ0,2d−1 . . . σs−1,2d−1

Figure 4.5: Vertical packing (vertical red box) and horizontal packing (or batching,
horizontal green box).

This packing technique can be used even if the function f has a single output
value. Furthermore, to �ll the TRLWE container is easier: generally N = 210, so it is
su�cient to have a 10-bit input to �ll all the slots.
This time, instead of just evaluating a full CMux tree, we use a di�erent approach.
If the LUT values are packed in �boxes�, our technique �rst uses a CMux tree to
select the right box, and then, a blind rotation (Algorithm 5) to �nd the right
element inside the selected box. Finally, this element is extracted via SampleExtract
(Algorithm 4) as a TLWE ciphertext. Figure 4.6 summarizes the schematized idea
of the entire procedure.
To be more formal, suppose that one wants to evaluate the function f , or just one
of its sub-functions fj, on a �xed input x = (x0, . . . , xd−1). We assume we know the

59

Chapter 4. TFHE: building blocks and leveled constructions

x0 . . . xd−1 fj

0 . . . 0 σj,0

1 . . . 0 σj,1

0 . . . 0 σj,2

1 . . . 0 σj,3

...
.

...

0 . . . 1 σj,2d−4

1 . . . 1 σj,2d−3

0 . . . 1 σj,2d−2

1 . . . 1 σj,2d−1

T
R
LW

E
N

T
R
LW

E
N

T
R
LW

E
N

T
R
LW

E
N

0

1

0

1

0

1

T
R
LW

E
N

B
lin
d
R
o
ta
te

T
R
LW

E
N

E
xt
ra
ct

σj,x
TLWE

xd−2 xd−1 (x0, . . . , xd−3)

Figure 4.6: Vertical packing for the evaluation of the fj LUT - As described in
Algorithm 6, the image represents the idea of evaluation of the sub-function fj on
x = (x0, . . . , xd−1) via vertical packing technique. After �vertically� packing the LUT
values σj,h (for h ∈ J0, 2d − 1K) in groups of size N , inside TRLWE samples, a CMux

tree, a blind rotation and a sample extraction are evaluated. The CMux tree is initially
used to select the TRLWE sample containing the output value (red box). Then the
output value is moved in the �rst slot of the TRLWE container by using the blind
rotation (Algorithm 5) and extracted by using the sample extraction (Algorithm 4).
The bits of x are given as TRGSW samples and the �nal result fj(x) = σj,x (with

x =
∑d−1

i=0 xi2
i) is extracted as a TLWE sample. In our example, we used 2d = 4N .

LUT associated to fj as in �gure 4.6. The output of fj(x) is just the LUT value
σj,x, at position x =

∑d−1
i=0 xi2

i.
Let δ = log2(N). We analyze the general case where 2d is a multiple of N = 2δ.
The LUT of fj, which is a column of 2d values, is now packed as 2d/N TRLWE
ciphertexts d0, . . . ,d2d−δ−1, where each dk encodes N consecutive LUT values
σj,kN , . . . , σj,(k+1)N−1.
To retrieve fj(x), we �rst need to select the block that contains σj,x. This block
has index p = bx/Nc, whose bits are the d− δ most signi�cant bits of x. Since the
TRGSW encryptions of these bits are among our inputs, one can use a CMux tree to
select this block dp. Then, σj,x is the ρ-th coe�cient of the message of dp where
ρ = x mod N =

∑δ−1
i=0 xi2

i. The bits of ρ are the δ least signi�cant bits of x, which
are also available as TRGSW ciphertexts in our inputs. We can therefore use a blind
rotation (Algorithm 5) to homomorphically multiply dp by X−ρ, which brings the
coe�cient σj,x in the �rst slot of the TRLWE container, and �nally, we extract it
with a sample extraction (Algorithm 4). Algorithm 6 details the evaluation of fj(x).

60

4.2 Leveled constructions in TFHE

Algorithm 6 Vertical Packing LUT of fj : Bd → T (calling Algorithm 5 and 4)

Input: A list of 2d

N
TRLWE samples dp ∈ TRLWEK(

∑N−1
i=0 σj,pN+iX

i) for p ∈ J0, 2d

N
−

1K, a list of d TRGSW samples Ci ∈ TRGSWK(xi), with xi ∈ B and i ∈ J0, d−1K.
Output: A TLWE sample c ∈ TLWEK(σj = fj(x)), with x = (x0, . . . , xd−1).
1: Evaluate the binary decision CMux tree of depth d − δ, with TRLWE inputs

d0, . . . ,d 2d

N
−1

and TRGSW inputs Cδ, . . . , Cd−1, and output a TRLWE sample d

2: d← BlindRotate(d, (20, . . . , 2δ−1, 0), (C0, . . . , Cδ−1))
3: Return c = SampleExtract(d)

The entire cost of the evaluation of fj(x) with Algorithm 6 consists in 2d

N
− 1 CMux

gates and a single blind rotation, which corresponds to δ CMux gates. Overall, we get
a speed-up by a factor N on the evaluation of each partial function, so a factor N
in total.

Lemma 4.2.2 (Vertical Packing). Let fj : Bd → T be a sub-function of the arbi-
trary function f : Bd → Ts, with LUT values σj,0, . . . , σj,2d−1. Let d0, . . . ,d 2d

N
−1

be

TRLWE samples, such that dp ∈ TRLWEK(
∑N−1

i=0 σj,pN+iX
i) for p ∈ J0, 2d

N
− 1K3.

Let C0, . . . , Cd−1 be TRGSW samples, such that Ci ∈ TRGSWK(xi), with xi ∈ B for
i ∈ J0, d− 1K and x = (x0, . . . , xd−1).
Then algorithm 6 outputs a TLWE sample c such that msg(c) = fj(x) = σj,x, with

x =
∑d−1

i=0 xi2
i, and using the same notations as in Lemma 3.2.2 and Theorem 4.1.3,

we have:

• ‖Err(d)‖∞ ≤ ATRLWE + d · ((k + 1)`NβATRGSW + (1 + kN)ε) (worst case),

• Var(Err(d)) ≤ ϑTRLWE + d · ((k + 1)`Nβ2ϑTRGSW + (1 + kN)ε2) (average case),

where ATRLWE and ATRGSW are upper bounds of the in�nite norm of the errors in
the TRLWE samples ant the TRGSW samples respectively, while ϑTRLWE and ϑTRGSW

are upper bounds of the variances.

Proof. The proof follows immediately from the results of Lemma 3.2.2 and Theo-
rem 4.1.3, and from the construction of the binary decision CMux tree. In particular,
the �rst CMux tree has depth (d− δ) and the blind rotation evaluates δ CMux gates,
which brings a total factor d in the depth. As the CMux depth is the same as in
horizontal packing, the noise propagation matches too.

Remark 4.2.2. As previously mentioned, the horizontal and vertical packing tech-
niques can be mixed together to improve the evaluation of f (Figure 4.7). This com-
bination is optimal in the case where s and d are both small or if 2d · s > N . In

3If the sub-function fj and its LUT are public, the LUT values σj,0, . . . , σj,2d−1 can be given

in clear. This means that the TRLWE samples dp, for p ∈ J0, 2
d

N − 1K are given as trivial TRLWE

samples dp ← (0,
∑N−1
i=0 σj,pN+iX

i) in input to algorithm 6.

61

Chapter 4. TFHE: building blocks and leveled constructions

particular, if we pack x = s coe�cients horizontally and y = N/x coe�cients ver-
tically, we need d2d/ye − 1 CMux gates plus one vertical packing LUT evaluation in
order to evaluate f , which is equivalent to log2(y) CMux evaluations. The result is
composed of the �rst x TLWE samples extracted.

x0 . . . xd−1 f0
. . . fs−1

0 . . . 0 σ0,0 . . . σs−1,0

1 . . . 0 σ0,1 . . . σs−1,1

0 . . . 0 σ0,2 . . . σs−1,2

1 . . . 0 σ0,3 . . . σs−1,3

...
.

...
...

...

0 . . . 1 σ0,2d−4 . . . σs−1,2d−4

1 . . . 1 σ0,2d−3 . . . σs−1,2d−3

0 . . . 1 σ0,2d−2 . . . σs−1,2d−2

1 . . . 1 σ0,2d−1 . . . σs−1,2d−1

Figure 4.7: Intuitively, the horizontal green rectangle encircles the bits packed in
the horizontal packing, while the vertical red rectangle encircles the bits packed in the
vertical packing. The dashed blue square represents the packing in the case where the
two techniques are mixed, as long as the number of coe�cients in the area is ≤ N .

4.2.2 Deterministic automata

It is folklore that every deterministic program which reads its input bit-by-bit in a
pre-determined order, uses fewer than B bits of memory, and produces a Boolean
answer, is equivalent to a deterministic automata of at most 2B states (independently
of the time complexity). This is in particular the case for every Boolean function
of p variables, that can be trivially executed with p − 1 bits of internal memory
by reading and storing its input bit-by-bit before returning the �nal answer. It is
of particular interest for most arithmetic functions, like addition, multiplication,
or CRT operations, whose naive evaluation only requires O(log(p)) bits of internal
memory.
But when output space is not binary, and several bits are packed together as we
show in previous sections, a more powerful tool is needed to manage the evaluations
in an e�cient way.

62

4.2 Leveled constructions in TFHE

In this section we present deterministic Weighted Finite Automata (det-WFA),
a generalization of deterministic Finite Automata (det-FA) obtained by adding a
weight in each transition.
Very informally, a deterministic �nite automaton is represented by a set of �nite
states linked by transitions. One of the states is an initial (or start) state, i.e. the
entering state to the automaton, and some states are �nal (or accept) states. To go
from a state to another, starting from the initial state, we read a word, which is the
input to the automaton: every letter (generally bits) of the word activates one and
only one transition (deterministic) from the current state to a following one. Once
the entire word has been read, if the current state is an accept state the automaton
accepts the word, otherwise it is rejected. We say that det-FA are decisional: they
output a single bit of information, 1 if the word is accepted, 0 if the word is rejected.
A toy example of deterministic �nite automaton is given in Figure 4.8.

q1 q2

q3

0

1

0

1

1

0

Figure 4.8: Toy example of det-FA - The automaton has 3 states Q = {q1, q2, q3}.
The initial state i is equal to q1, and there is a single �nite state q2, denoted by
a double circle. The expected words are list of bits (so the alphabet Σ is B). Two
transitions (corresponding to letters 0 and 1) come out from every state.

A deterministic weighted �nite automaton, instead, looks exactly like a det-FA,
but with weights added to every transition. An initial weight is set to 0 and it
is incremented at every transition by the corresponding weight. Thus, the �nal
result corresponds to the sum of the weights of the transitions that the automaton
evaluated by reading the input word. A toy example is given in Figure 4.9.

If we want to evaluate a function via det-FA, we need to evaluate one automaton
per output bit of the function. The det-FA approach is the �rst one we proposed
in [CGGI16a]. The year after, in [CGGI17a], we proposed an evaluation via det-
WFA. This generalized technique from the automata theory allows to evaluate a
single automaton to obtain all the bits of the �nal result in a single pass. Det-WFA
are in fact computational, instead of decisional: roughly speaking, the weights added
in transitions act like a sort of memory that accumulates the bits of the �nal result
all along the evaluation. Moreover, the transitions in det-FA and det-WFA have the
same cost, which implies a considerable advantage in using the second ones. We

63

Chapter 4. TFHE: building blocks and leveled constructions

q1 q2

q3

w = 0

0, w12

1, w21

0, w31

1, w13
1, w32

0, w22

Figure 4.9: Toy example of det-WFA - The automaton is the same as in Figure 4.8,
but this time we added a weights in every transition. The weight w is initialized to
0: in every transition going from a state qi to a state qj, the weight w is incremented
by wij. The �nal result is the weight at the �nal state.

clarify all these ideas by giving some practical examples in the �nal part of this
section.
We start by detailing the use of det-WFA to evaluate some arithmetic functions
(largely used in applications, such as addition (and multi-addition), multiplication,
squaring, comparison and max, etc.). We refer to [BGW00] and [DG09] for further
details.
De�nition 4.2.1 is a simpli�ed version of the original de�nition, that we adapt in
order to keep all this part as simple as possible.

De�nition 4.2.1 (Deterministic weighted �nite automata (det-WFA)). A de-
terministic weighted �nite automaton (det-WFA) over a group (S,⊕) is a tuple
A = (Q, i,Σ, T), where Q is a �nite set of states, i is the initial state, Σ is the
alphabet, T ⊆ Q × Σ × S × Q is the set of transitions. Every transition itself is a
tuple t = q

σ,ν−→ q′ from the state q to the state q′ by reading the letter σ with weight
w(t) equal to ν, and there is at most one transition per every pair (q, σ).

Let P = (t1, . . . , td) be a path, with tj = qj−1
σj ,νj−→ qj. The word σ = σ1 . . . σd ∈ Σd

induced by P has weight w(σ) equal to
⊕d

j=1w(tj), where the w(tj) are all the
weights of the transitions in P : σ is called the label of P . Because the automaton is
deterministic, every label induces a single path (i.e. there is only one possible path
per word).

Remark 4.2.3. In our applications, we �x the alphabet Σ = B. De�nition 4.2.1
restraints the WFA to the deterministic complete accessible (the non-deterministic
case is not supported), and universally accepting case (i.e all the words are accepted).
In the general (non-deterministic) case, the additive group would be replaced by the
second law of a semi-ring (S, •,⊕), and we would sum the weights, using the �rst
law, of all accepting paths. However, since non-determinism is not supported, we
want to keep the de�nition as simple as possible. In the rest of the manuscript we
set (S,⊕) as (TN [X],+).

64

4.2 Leveled constructions in TFHE

Our goal is to use det-WFA to evaluate arithmetic functions. The evaluation of an
automaton is done via a list of MUX gates, starting from the �nal states back to
the initial one. Of course, we want to do this evaluation homomorphically. Next
theorem gives the details of such evaluation and proposes the analysis of the noise
propagation during the computations. A list of CMux gates is evaluated: the TRGSW
ciphertexts contain the bits of the word to be evaluated and the TRLWE samples
contain the partial weights. The �nal weight contains all the bits of the result.

Theorem 4.2.1 (Homomorphic evaluation of det-WFA). Let A = (Q, i,B, T) be a
det-WFA with weights in (TN [X],+), and let |Q| denote the total number of states.
Let C0, . . . , Cd−1 be d valid TRGSWK samples of the bits of a word σ = σ0 . . . σd−1.
By evaluating at most d · |Q| CMux gates, Algorithm 7 outputs a TRLWEK sample
d that encrypts the weight w(σ), such that (using the same notations as in Lemma
3.2.2)

• ‖Err(d)‖∞ ≤ d · ((k + 1)`NβATRGSW + (kN + 1)ε) (worst case),

• Var(Err(d)) ≤ d · ((k + 1)`Nβ2ϑTRGSW + (kN + 1)ε2) (average case),

where ATRGSW is an upper bound on the in�nite norm of the error in the TRGSW
samples and ϑTRGSW is an upper bound of their variance. Moreover, if all the words
connecting the initial state to a �xed state q ∈ Q have the same length, then the
upper bound on the number of CMux evaluated by Algorithm 7 decreases to |Q|.

Algorithm 7 Homomorphic evaluation of a det-WFA

Input: A det-WFA A = (Q, i,B, T). T0(q) and T1(q) denote the states that are
reached when reading a binary letter from the state q, and w0(q) and w1(q) the
weight of these transitions. d valid TRGSWK samples C0, . . . , Cd−1 of the bits of
a word σ = σ0 . . . σd−1.

Output: A TRLWEK encryption of w(σ)
1: for each q ∈ Q accessible at depth d do
2: set cd,q := 0
3: end for
4: for j = d− 1 down to 0 do
5: for each q ∈ Q accessible at depth j do
6: set cj,q := CMux

(
Cj, cj+1,T1(q) + (0, w1(q)), cj+1,T0(q) + (0, w0(q))

)
.

7: end for
8: end for
9: return c0,i

Proof. Let q ∈ Q be a state, and σ a binary word, there exists a unique path starting
from q and labelled by σ. We note w(q, σ) the weight of this path. Algorithm 7

65

Chapter 4. TFHE: building blocks and leveled constructions

evaluates the weights backwards from the last letter σd−1 of the word to the �rst
one. The invariant of the the main loop is that for all j in [0, d] and q ∈ Q, if q
is accessible at depth j, cj,q is a TRLWEK sample of w(q, (σj, . . . , σd−1)). Its error
amplitude satis�es

‖Err(cj,q)‖∞ ≤ (d− j)(k + 1)`NβATRGSW + (d− j)(kN + 1)ε,

and its error variance satis�es

Var(Err(cj,q)) ≤ (d− j)(k + 1)`Nβ2ϑTRGSW + (d− j)(kN + 1)ε2.

For j = d, the invariant is true, because step 2 initializes the TRLWEK samples
to zero. It is the weight of the empty word, and the error is null. Assuming by
induction that the invariant holds at depth j+ 1, we analyze what happens at line 6
on iteration j on state q.

Consider the two transitions q
0,w0(q)−→ T0(q) and q

1,w1(q)−→ T1(q), where T0(q) and T1(q)
denote the states that are reached when reading a binary letter from the state q, and
w0(q) and w1(q) denote the weights of these transitions. If q is accessible at depth
j, then T0(q) and T1(q) are both accessible at depth j + 1, and encode respectively
w(T0(q), (σj+1 . . . σd−1)) and w(T1(q), (σj+1 . . . σd−1)). Therefore, after applying the
CMux, the message of cj,q is w(q, (σj . . . σd−1)). By applying the noise propagation
inequalities of Lemma 3.2.2, we have that

‖Err(cj,q)‖∞ ≤ ‖Err(CMux(Cj, cj+1,T1(q) + (0, w1(q)), cj+1,T0(q) + (0, w0(q))))‖∞
≤ max(‖Err(cj+1,T1(q))‖∞, ‖Err(cj+1,T0(q))‖∞)

+ (k + 1)`Nβ‖Err(Cj)‖∞ + (kN + 1)ε

in the worst case, and

Var(Err(cj,q)) ≤ Var(Err(CMux(Cj, cj+1,T1(q) + (0, w1(q)), cj+1,T0(q) + (0, w0(q)))))

≤ max(Var(Err(cj+1,T1(q))),Var(Err(cj+1,T0(q))))

+ (k + 1)`Nβ2Var(Err(Cj)) + (kN + 1)ε2

in the average case, which prove that the invariant holds at depth j, and thus, for
all j ∈ [0, d]. Since the initial state i is accessible at depth j = 0, this proves that
the �nal result is c0,i encodes w(i, σ) = w(σ), with the bounds announced in the
theorem.
For the complexity, in the worst case, the main for-each loops over all states q ∈ Q
and all depths j ∈ [0, d− 1], which represents d|Q| CMux evaluations. If, by the last
condition of the theorem, each state is accessible only at a single depth, then all
for-each ranges are disjoint subsets of Q, so the total number of CMux evaluated is
≤ |Q|.
Remark 4.2.4. This algorithm can also evaluate regular deterministic Finite Au-
tomata (det-FA): in this case the weight of all transitions at depth d− 1 that reach
a �nal state is 0.5, and all other weights are 0.

66

4.2 Leveled constructions in TFHE

In the following sections we explain in detail how to use det-WFA to e�ciently
evaluate the maximal value and the multiplication between two d-bits integers.

Max

In this section we propose as an example the evaluation of the Max function of two
d-bit integers x =

∑d−1
i=0 xi2

i and y =
∑d−1

i=0 yi2
i, with xi, yi ∈ B for i ∈ J0, d − 1K.

We take advantage of this example to show the di�erence between the evaluation
via det-FA and det-WFA. The automata take in input all the bits of x and y and
output the maximal value between them. This �nal result is a d-bit integer, that
we note m =

∑d−1
i=0 mi2

i. This means that if we want to compute it with det-FA,
we need to evaluate d separate automata, while with det-WFA a single automaton
is su�cient.

We start by describing the evaluation via det-FA. In order to compute the max
function, we exploit the automaton for the comparison, shown in Figure 4.10. The
automaton reads in input the bits of x and y alternatively starting from the most
signi�cant ones. It starts from a state E, where x and y are equal and moves to the
following states depending on the value of the input bits. If x > y, the automaton
moves to the state A and stays there until the end of the evaluation and, in the
same way, if x < y, the automaton moves to the state B and stays there until the
end of the evaluation.
At this point, to compute all the bits of the max value, the idea is to deviate the
automaton of the comparison and extract an intermediary value. For instance, as
we show in Figure 4.11, to compute the third most signi�cant bit md−3 of the
�nal result, we deviate the automaton and read just the 3 most signi�cant bits of
x and y. Every new bit of the result needs a di�erent automaton, and previous
computations cannot be re-used. In fact, as we explained before, the MUX evaluation
of the automaton starts from the �nal state and goes back to the beginning. This
implies that every time we deviate the automaton, the su�xes are ignored and the
computations linked to those su�xes are useless.

Instead, by using det-WFA we evaluate a single automaton and we obtain the �-
nal result in a single pass. The construction of the Max det-WFA starts from the
comparison automaton, as for det-FA. But this time, instead of deviating the au-
tomaton, we evaluate it entirely till the end and we add speci�c weights in some of
the transitions, as shown in Figure 4.12. Here, we highlight in color the transitions
on which we add the weights:

• If the most signi�cant bit md−1 of the �nal result is equal to 1, it implies that
the automaton went through one of the light blue transitions;

• If the second most signi�cant bitmd−2 of the �nal result is equal to 1, it implies
that the automaton went through one of the orange transitions;

67

Chapter 4. TFHE: building blocks and leveled constructions

E

E0

E1

B

E

A

B

E0

E1

A

B

E

A

B

E0

E1

A

B

E

A

0

1

1

0

1

0

0

1

0

1

0

1

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

1

0

1

0

0

1

xd−1 yd−1 xd−2 yd−2 xd−3 yd−3 . . .

"x < y"

"x = y"

"x > y"

Figure 4.10: Comparison automaton - The automaton reads in input the bits of x
and y staring from the most signi�cant ones. It moves between the main states E
(indicating that x = y), A (indicating that x > y) and B (indicating that x < y),
depending on the value of input bits.

• If the third most signi�cant bit md−3 of the �nal result is equal to 1, it implies
that the automaton went through one of the pink transitions;

• etc.

As the transitions in det-FA and det-WFA have the same cost (even if a weight
is added), the cost of the evaluation of the max function via det-WFA is d times
cheaper than the evaluation via det-FA.

To be more formal, we analyze in detail the evaluation of the max function via det-
WFA. We can sum up the automaton presented in Figure 4.12 in a more compact
way, as in Figure 4.13. As before, the automaton has 3 principal states (noted A,
B, E) and 4 intermediary states (noted (A), (B), (E1), (E0)), that keep track of
which number is the maximum, and in case of equality what is the last value of
xi. A weight +1

2
X i is added on all the transitions that read the digit 1 from the

maximum.

Remark 4.2.5. In practice, to evaluate the MAX function, we convert the det-
WFA in a circuit that counts 5d CMux gates. Roughly speaking, we have to read the
automata (Figure 4.13) in the reverse. We initialize 3 states A,B,E as null TRLWE

68

4.2 Leveled constructions in TFHE

E

E0

E1

B

E

A

B

E0

E1

A

B

E

A

B

E0

0

1
0

1

1

0

1

0

0

1

0

1

0

1

0

1

1

0

1

0

0

1

0

1

0

1

0

1

1

0

1

0

0, 1

0, 1

xd−1 yd−1 xd−2 yd−2 xd−3 yd−3

"x < y"

"x = y"

"x > y"

Figure 4.11: Idea - Deviating the comparison automaton to compute the third most
signi�cant bit of the maximal value.

samples. Then, for i from d− 1 to 0, we update the states as follows:

(A) := CMux(Cy
i , A+ (0, 1

2
X i), A);

(E0) := CMux(Cy
i , A+ (0, 1

2
X i), E);

(E1) := CMux(Cy
i , E,B);

(B) := CMux(Cy
i , B,B);

A := CMux(Cx
i , (A), (A));

E := CMux(Cx
i , (E1) + (0, 1

2
X i), (E0));

B := CMux(Cx
i , (B) + (0, 1

2
X i), (B)).

Here the Cx
i and Cy

i are TRGSW encryptions of the bits xi and yi respectively, and
they are the inputs. We observe that two transitions are constant: the one computing
(B) and the one updating A. So we can reduce the computation of the max value to
the d-times repetition (for i from d− 1 to 0) of the 5 following CMux homomorphic
gates (the intermediary states (A) and (B) disappear):

A := CMux(Cy
i , A+ (0, 1

2
X i), A);

E0 := CMux(Cy
i , A+ (0, 1

2
X i), E);

E1 := CMux(Cy
i , E,B);

E := CMux(Cx
i , E1 + (0, 1

2
X i), E0);

B := CMux(Cx
i , B + (0, 1

2
X i), B).

The output of the evaluation is the TRLWE sample E, which contains the maximal
value.

69

Chapter 4. TFHE: building blocks and leveled constructions

E

E0

E1

B

E

A

B

E0

E1

A

B

E

A

B

E0

E1

A

B

E

A

0

1

1

0

1

0

0

1

0

1

0

1

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

1

0

1

0

0

1

xd−1 yd−1 xd−2 yd−2 xd−3 yd−3 . . .

"x < y"

"x = y"

"x > y"

Figure 4.12: Det-WFA for the evaluation of the Max function - In color we high-
light the transitions on which a weight is added. Di�erent colors indicate transitions
that in�uence the value of the output bits in di�erent positions.

Overall, the next lemma, which is a direct consequence of Theorem 4.2.1, shows that
the Max can be computed by evaluating only 5d CMux gates, instead of Θ(d2) with
classical deterministic automata.

Lemma 4.2.3 (Evaluation of Max det-WFA). Let A be the det-WFA of the Max,
described in Figure 4.13. Let Cx

0 , . . . , C
x
d−1, C

y
0 , . . . , C

y
d−1 be TRGSWK samples of the

bits of x and y respectively. By evaluating 5d CMux gates (depth 2d), the Max det-
WFA outputs a TRLWE sample d encrypting the maximal value between x and y
and (with same notations as in Lemma 3.2.2)

• ‖Err(d)‖∞ ≤ 2d · ((k + 1)`NβATRGSW + (kN + 1)ε) (worst case),

• Var(Err(d)) ≤ 2d · ((k + 1)`Nβ2ϑTRGSW + (kN + 1)ε2) (average case).

Here ATRGSW and ϑTRGSW are upper bounds of the amplitude and of the variance of
the errors in the TRGSW samples.

Multiplication

For the multiplication we use the same approach and we construct a det-WFA which
maps the schoolbook multiplication. We illustrate the construction on the example
of the multiplication between two 2-bits integers x = x1x0 and y = y1y0. As shown
in the top part of Figure 4.14, after an initial step of bit by bit multiplication, a

70

4.2 Leveled constructions in TFHE

· · ·

B

E

A

(B)

(E0)

(E1)

(A)

B

E

A

· · ·

xi yi

1

0

1,+ 1
2X

i

0

1,+ 1
2X

i

0

1,+ 1
2X

i

0

1

0

0

1

1,+
1
2
Xi

0

Figure 4.13: Max det-WFA - The states A and (A) mean that x is the maximal
value, the states B and (B) mean that y is the maximal value, and �nally, the states
E, (E1) and (E0) mean that x and y are equals on the most signi�cant bits. If the
current state is A or B, the following state remains the same. The initial state is E.
If the current state is E, after reading xi there are two possible intermediate states:
(E1) if xi = 1 and (E0) if xi = 0. After reading the value of yi, the 3 possible states
A, B and E are possible. The det-WFA is repeated as many times as the bit length
of the integers evaluated and the weights are given in clear.

multi-addition (shifted of one place on the left for every line) is performed. The bits
of the �nal result m = m3m2m1m0 are computed as the sum of each column with
carry.
The det-WFA computes the multiplication by keeping track of the partial sum of
each column in the states, and by using the transitions to update these sums. For
the multiplication of 2-bits integers, the automaton (described in the bottom part
of Figure 4.14) has 6 main states (i, c0, c10, c11, c20, c21), plus 14 intermediary states
(noted with capital letters and parenthesis) that store the last bit read. The value
of the j-th (for j ∈ J0, 3K) output bit is put in a weight on the last transition of each
column. The �nal weight is the result of the multiplication.
For the generic multiplication of two d-bits integers, we can upper bound the number
of states by 4d3, instead of Θ(d4) with one classical automata per output bit. For a
more precise number of states we wrote a C++ program to eliminate unreachable
states and re�ne the leading coe�cient. The depth is 2d2 and the noise evaluation can
be easily deducted by previous results. The same principle can be used to construct
the multi-addition, and its det-WFA is slightly simpler.

4.2.3 Bit Sequence Representation

We now present another design which is speci�c to the multi-addition (or its deriva-
tives), but which is faster than the generic construction with det-WFA. The idea is
to build an homomorphic scheme that can represent small integers, say between 0

71

Chapter 4. TFHE: building blocks and leveled constructions

y1 y0

× x1 x0

x0y1
2
x0y0

1

+ x1y1
4

x1y0
3

m3 m2 m1 m0

i

(A1)

(A0) c0

(B1)

(B0)

(C1)

(C0)

(D11)

(D10)

(D01)

(D00)

c11

c10

(E11)

(E10)

(E01)

(E00)

c21

c20

1

0

1,+ 1
2

0

1
0

1

0

1

0

1
0

1

0

1

0

10,+
1

2 X0/1,+ 1
2 X

1,+ 1
2 X
0

1
0

1

0

1

0

1,+ 1
2 X 3

0,+
1

2 X
20/1,+ 1

2 X
21,+ 1

2 X 2

0
1
0

x0 y0 x0 y1 x1 y0 x1 y1

Figure 4.14: Schoolbook 2-bits multiplication and corresponding det-WFA

and N = 2p, and which is dedicated to only the three elementary operations used
in the multi-addition algorithm, namely:

1. Extract any of the bits of the value as a TLWE sample;

2. Increment the value by 1 (or by a small integer);

3. Integer division of the value by 2.

We now explain the basic idea, and then, we show how to implement it e�ciently
on TRLWE ciphertexts.

We represent integers modulo 2N , with N = 2p, by using their Bit Sequence Repre-
sentation (BSR). For j ∈ J0, pK and k, l ∈ Z, we call B(l)

j,k the j-th bit of l+ k in the
little endian signed binary representation.
For each integer k ∈ Z, [B

(l)
0,k, B

(l)
1,k, ..., B

(l)
p,k] is the (little endian signed) binary rep-

resentation of l + k mod 2N . When k is not speci�ed, B(l)
j represents the binary

sequence of all the j-th bits of integers l, l + 1, l + 2,
Let l = 0. Observe that B

(0)
0 = (0, 1, 0, 1, ...) is 2-periodic, B

(0)
1 =

(0, 0, 1, 1, 0, 0, 1, 1...) is 4-periodic and, more generally, for all j ∈ J0, pK and l ∈ Z,
B

(l)
j is 2j-antiperiodic and it is the left shift of B(0)

j by l positions. Therefore, it
su�ces to have 2j ≤ N consecutive values of the sequence to (blindly) deduce all
the remaining bits.
We now suppose that an integer l ∈ J0, N − 1K is represented by its BSR, de�ned as
BSR(l) = [B

(l)
0 , . . . , B

(l)
p].

72

4.2 Leveled constructions in TFHE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ← k

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ← B
(l)
0

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 ← B
(l)
1

2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 ← B
(l)
2

3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 ← B
(l)
3

↑ j l

Figure 4.15: BSR - The �gure represents the BSR(l). Here l = 0, N = 23. The
�rst column corresponding to k = 0 contains the bits of l in the little endian repre-
sentation.

We now explain how to compute BSR(l + 1) (increment) and BSR(bl/2c) (divide
by 2) using only copy and negations operations on bits at a �xed position which
does not depend on l (blind computation). Then, we show how to represent these
operations homomorphically on TRLWE ciphertexts.

Increment. Let BSR(l) = [B
(l)
0 , . . . , B

(l)
p] be the BSR of some unknown num-

ber l ∈ J0, N − 1K. Our goal is to compute the BSR of l + 1, BSR(l + 1) =

[B
(l+1)
0 , . . . , B

(l+1)
p]. If we know at lest N consecutive values of B(l)

j (for j ∈ J0, pK),
it su�ces to de�ne the sequence B(l+1)

j on N consecutive values, the rest is deduced
by periodicity. To map the increment operation, all we need to shift the sequences
by 1 position

B
(l+1)
j,k = B

(l)
j,k+1 for all k ∈ Z.

More generally, we can increment the BSR by any integer in J0, N − 1K, as in Fig-
ure 4.16.

r0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

r3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

↓ ·X−5

r′0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

r′1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

r′2 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1

r′3 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0

Figure 4.16: (T)BSR - example of addition +5.

73

Chapter 4. TFHE: building blocks and leveled constructions

Integer division by two. Let BSR(l) = [B
(l)
0 , . . . , B

(l)
p] be the BSR of some

unknown number l ∈ J0, N−1K. Our goal is to compute the BSR of b l
2
c, BSR(b l

2
c) =

[B
(b l

2
c)

0 , . . . , B
(b l

2
c)

p].
As the BSR is the representation of integers in base 2, when we want to perform
the division by 2, it corresponds to eliminate the �rst line and keep just the odd
columns of the BSR (see Figure 4.15). Thus we can set

B
(b l

2
c)

j,k = B
(l)
j+1,2k for j ∈ J0, p− 1K and ∀k ∈ Z.

The only exception is the last line of the BSR, that has to be regenerated. Indeed,
B

(l)
j+1,2k is the (j+1)-th bit of l+2k and it is the j-th bit of its half bl/2c+k, which is

our desired B(bl/2c)
j,k . This is unfortunately not enough to reconstruct the last sequence

B
(bl/2c)
p , since we have no information on the (p+ 1)-th bits in BSR(l). However, in

our case, we can reconstruct this last sequence directly. First, the numbers b l
2
c+k for

k ∈ [0, N/2−1] are all< N , so we can blindly set the correspondingB
(b l

2
c)

p,k = 0. Then,

we just need to note that [B
(l)
p,0, . . . , B

(l)
p,N−1] is N−l times 0 followed by l times 1, and

our target [B
(b l

2
c)

p,N/2, . . . , B
(b l

2
c)

p,N−1] must consist N/2− l times 0 followed by bl/2c times

1. Therefore, our target can be �lled with the even positions [B
(l)
p,0, B

(l)
p,2, . . . , B

(l)
p,N−2].

To summarize, the last line of the BSR in the division by 2 corresponds to the
following blind transformation:

B
(b l

2
c)

p,k = 0 for k ∈ J0, N
2
− 1K

B
(b l

2
c)

p,N/2+k = B
(l)
p,2k for k ∈ J0, N2 − 1K

The idea of the division by 2 is schematized in Figure 4.17.

r0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

r1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

r2 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1

r3 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0

↓ πdiv2
r′0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

r′1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

r′2 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

r′3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

Figure 4.17: (T)BSR - example of division by 2.

74

4.2 Leveled constructions in TFHE

TBSR

We now explain how we can encode these BSR sequences on TRLWE ciphertexts,
considering that all the coe�cients need to be in the torus rather than in B, and
that we need to encode sequences that are either N -periodic or N -antiperiodic. We
note the encoded BSR by TBSR: this latter is simply an homomorphic counter.
Therefore, this is our basic encoding of the BSR sequences: let BSR(l) =

[B
(l)
0 , . . . , B

(l)
p] be the BSR of some unknown number l ∈ J0, N−1K. For j ∈ J0, p−1K,

we represent B(l)
j with the polynomial

µj =
N−1∑

k=0

1

2
B

(l)
j,k ·Xk

and we represent the last B(l)
p with the polynomial

µp =
N−1∑

k=0

(
1

2
B

(l)
p,k −

1

4

)
·Xk.

This simple rescaling between the bit representation BSR(l) and the torus repre-
sentation M = [µ0, . . . , µp] is bijective.

The increment operation described in previous section for the BSR consists in a
cyclic shift of coe�cients. It correspond to the multiplication by X (or to a power
of X) in the TBSR encoding, which has a similar behaviour on coe�cients of torus
polynomials.

The integer division by two immediately rewrites into an a�ne function thanks to
the TBSR encoding. It transforms the coe�cients (µj,k)j∈J1,pK,k∈{0,2,...,2N−2} ∈ TpN
into (µ′0, . . . , µ

′
p) as follow:

πdiv2 :

µ′j,k = µj+1,2k for j ∈ [0, p− 2], k ∈ [0, N − 1]
µ′p−1,k = µp,2k + 1

4
for k ∈ [0, N − 1]

µ′p,k = −1
4

for k ∈ [0, N
2
− 1]

µ′p,N/2+k = µp,2k for k ∈ [0, N
2
− 1]

The output of the division by two is still an integer in J0, N − 1K, as the input.
Finally, we call TBSR ciphertext of an unknown integer l ∈ J0, N − 1K a vector
C = [c0, ..., cp] of TRLWE ciphertexts of message [µ0, . . . , µp].

De�nition 4.2.2 (TBSR encryption). We de�ne the TBSR encryption as follows.

• Parameters and keys: TRLWE parameter N with secret key K ∈ BN [X], and
a circular-secure (public) key-switching key KSK→K,γ from K to itself, noted
just KS.

75

Chapter 4. TFHE: building blocks and leveled constructions

• TBSRSet(l): return a vector of trivial TRLWE ciphertexts encoding the torus

representation of [B
(l)
0 , . . . , B

(l)
p].

• TBSREncrypt(l): return a vector of non-trivial TRLWE ciphertexts encoding

the torus representation of [B
(l)
0 , . . . , B

(l)
p].

• TBSRBitExtractj(C): Return SampleExtract(cj) (Algorithm 4) when j < p. 4

• TBSRIncrement(C): Return X−1 · C.
• TBSRDiv2(C): Use KS to evaluate πdiv2 homomorphically on C. Since it is
a 1-lipschitzian a�ne function, this consists in applying the public functional
KeySwitch to KS, the linear part of πdiv2 and C, and then, translate the result
by the constant part of πdiv2.

The following theorem is a direct consequence of Theorem 4.1.1 (with n = N). The
correctness of the result has already been discussed.

Theorem 4.2.2 (TBSR operations). Let N , K and KS be TBSR parameters and
keys as de�ned before, and let C be a TBSR ciphertext of l ∈ J0, N − 1K with noise
amplitude η (and noise variance ϑ). Then for j ∈ J0, p− 1K, TBSRBitExtractj(C) is
a TLWEK ciphertext of the j-th bit of l, over the message space {0, 1

2
}, with noise

amplitude (resp. variance) ≤ η (resp. ≤ ϑ). If l ≤ N−2 (if l = N−1 the result is not
determined), TBSRIncrement(C) is a TBSR ciphertext of l+ 1 with noise amplitude
(resp. variance) ≤ η (resp. ≤ ϑ). C ′ = TBSRDiv2(C) is a TBSR ciphertext of bl/2c
such that:

• ‖Err(C ′)‖∞ ≤ ‖Err(C)‖∞ +N2tAKS +N2−(t+1) (worst-case),

• Var(Err(C ′)) ≤ Var(Err(C)) +N2tϑKS +N2−2(t+1) (average case),

where AKS and ϑKS are the amplitude and variance of the key-switching key KS,
respectively.

Using the TBSR counter for a multi-addition or a multiplication.

The TBSR counter allows to perform a multi-addition or multiplication using the
school-book elementary algorithms (see Algorithm 8 and Algorithm 9). This leads
to a leveled multiplication circuit (with KeySwitching) which is quadratic instead of
cubic with weighted automata.

The following lemma analyzes the case of the multiplication and the result described
is a consequence of Theorem 4.1.1. The correctness of the result can be deducted
from the construction, presented in Algorithm 9 (with N > 2d).
The formulas for the multi-addition can be easily found, and the correctness comes
from the construction (Algorithm 8, with N > 2m).

4For the p-th bit, one would return SampleExtract(cp)+(0, 14), but it is always 0 if l ∈ [0, N−1].

76

4.2 Leveled constructions in TFHE

Lemma 4.2.4. Let N ,Bg,` and KS be TBSR and TRGSW parameters with the
same key K. We suppose that each TBSR ciphertext has p ≤ 1 + log(N) TRLWE
ciphertexts. Let (Ai) and (Bi) for i ∈ [0, d− 1] be TRGSW-encryptions of the bits of
two d-bits integers (little endian), with the same noise amplitude A (resp. variance
ϑ).
Then, Algorithm 9 computes all the bits of the product within 2d2p CMux and (2d−2)p
public key switching, and the output ciphertexts satisfy:

• ‖Err(Out)‖∞ ≤ 2d2((k+ 1)`NβA+ (kN + 1)ε) + (2d−2)(N2tAKS +N2−(t+1)),

• Var(Err(Out)) ≤ 2d2((k+1)`Nβ2ϑ+(kN+1)ε2)+(2d−2)(N2tϑKS+N2−2(t+1)),

where AKS and ϑKS are the amplitude and variance of the key-switching key KS,
respectively.

Algorithm 8 TBSR multi-addition

Input: The bitwise TRGSW-encryption (Ai,j)i∈[0,m−1],j∈[0,d−1] of m integers
a0, . . . , am−1 of d-bits each

Output: bitwise LWE encryptions of the sum Out0, . . . ,Outd+log2(m).
1: C ← TBSRSet(0) . The counter is initialized at 0
2: for j = 0 to d− 2 do
3: for i = 0 to m− 1 do . Sum the j-th column
4: C ← CMux(Aj,i,TBSRIncr(C), C);
5: end for
6: Outj ← TBSRBitExtract0(C); . Extract Outj = the lsb
7: C ← TBSRDiv2(C); . and compute the carry
8: end for
9: for i = 0 to m− 1 do . Sum the last column
10: C ← CMux(Ad,i,TBSRIncr(C), C);
11: end for
12: Outd−1+k ← TBSRBitExtractk(C) for each k ∈ J0, log2(m)K;
13: return Out . and output all the bits

Improving TBSR with horizontal packing.

Recall that our TRLWE ciphertext encrypt torus polynomials of degree ≤ N ,
with N = 1024. So if the TBSR encrypts numbers in the interval J0, 1027K, we
need p = log2(N)+1 = 11 TRLWE ciphertexts, one per line B(l)

0 , . . . , B
(l)
p of the BSR.

In this section we propose two improvements for the TBSR encryption. The �rst one
concerns the case when the TBSR encrypts numbers in a smaller interval (always a
power of 2). The second improvement takes advantage of the fact that some lines of
the TBSR are periodic/antiperiodic to reduce the number of TRLWE ciphertexts.

77

Chapter 4. TFHE: building blocks and leveled constructions

Algorithm 9 TBSR multiplication

Input: The bitwise TRGSW-encryptions (Aj)j∈[0,d−1],(Bj)j∈[0,d−1] of two integers a, b
of d-bits each

Output: bitwise LWE encryptions of the product Out0, . . . ,Out2d−1.
1: C ← TBSRSet(0) . The counter is initialized at 0
2: for j = 0 to d− 1 do . Column of the multi-addition
3: for i = 0 to j do . Sum the j-th column
4: C ← CMux(Ai,CMux(Bj−i,TBSRIncr(C), C), C);
5: end for
6: Outj ← TBSRBitExtract0(C); . Extract Outj = the lsb
7: C ← TBSRDiv2(C); . and compute the carry
8: end for
9: for j = d to 2d− 3 do . Column of the multi-addition
10: for i = j − d+ 1 to d− 1 do . Sum the j-th column
11: C ← CMux(Ai,CMux(Bj−i,TBSRIncr(C), C), C);
12: end for
13: Outj ← TBSRBitExtract0(C); . Extract Outj = the lsb
14: C ← TBSRDiv2(C); . and compute the carry
15: end for
16: C ← CMux(Ad−1,CMux(Bd−1,TBSRIncr(C), C), C);
17: Out2d−2 ← TBSRBitExtract0(C);
18: Out2d−1 ← TBSRBitExtract1(C);
19: return Out . Output all the bits

First improvement. If the domain of the integers is J0, y− 1K where xy = N , we
can use horizontal packing to pack x di�erent polynomials mod Xy + 1 in a single
TRLWE ciphertext mod XN + 1. This allows to store the p = log2(y) + 1 rows of the
BSR in only dp/xe TRLWE ciphertexts.
Suppose we have to pack the BSR of a numbers l ∈ J0, y − 1K. Then, every TRLWE
container packs the x rows of the BSR of l. the �rst container, as instance, packs
B

(l)
0 , . . . , B

(l)
x−1 (each one of them contains y coe�cients). The coe�cients are grouped

by column position:

TRLWE =

B
(l)
0,0 . . . B

(l)
x−1,0 B

(l)
0,1 . . . B

(l)
x−1,1 . . . B

(l)
0,y−1 . . . B

(l)
x−1,y−1

Then, in the increment operation we just replace the shift by X−1 by a multipli-
cation by X−x. This provides a factor x speedup compared to the basic scheme.
For instance, if N = 1024 and the domain of the BSR integers is [0, 127], which is
enough to perform a multiplication with a 64 bit number, the 8 sequences can be
packed in a single TRLWE ciphertext (x = 8,y = 128).

78

4.2 Leveled constructions in TFHE

The same improvement can be used to pack the BSR of x di�erent numbers
l0 . . . , lx−1 ∈ J0, y − 1K, and perform the same operation to all of them (batching).
In this case, every TRLWE container packs the j-th line of the BSR of each number,
i.e. B(l0)

j , . . . , B
(lx−1)
j : each line contains y coe�cients. In the TRLWE container, the

coe�cients are grouped by column position, for a total of x groups:

TRLWE0 = B
(l0)
0,0 B

(l1)
0,0 . . . B

(lx−1)
0,0 B

(l0)
0,1 B

(l1)
0,1 . . . B

(lx−1)
0,1 . . .

...

TRLWEj = B
(l0)
j,0 B

(l1)
j,0 . . . B

(lx−1)
j,0 B

(l0)
j,1 B

(l1)
j,1 . . . B

(lx−1)
j,1 . . .

...

TRLWEp = B
(l0)
p,0 B

(l1)
p,0 . . . B

(lx−1)
p,0 B

(l0)
p,1 B

(l1)
p,1 . . . B

(lx−1)
p,1 . . .

As well as before, in the increment operation we just replace the shift by X−1 by a
multiplication by X−x.

Second improvement. Even if the domain is as large as [0, N − 1], the �rst bit
sequences have a small period. It is therefore possible to use the previous improve-
ment to encode many of the �rst sequences as a single ciphertext, and leave the last
N -antiperiodic one alone on its ciphertext.
For instance, if N = 1024, we observe that:

• The �rst 8 sequences (rows of the BSR) B(l)
0 , . . . , B

(l)
7 are all 128-periodic or

128-antiperiodic (the last one), so they can be packed on a single TRLWE
ciphertext.

• The next two sequences B(l)
8 , B

(l)
9 are 512-periodic/antiperiodic, and they can

be packed on a single TRLWE ciphertext.

• The last sequence B(l)
10 is 1024-antiperiodic, and stays alone in a TRLWE con-

tainer.

As long as periodic sequences use the {0, 1
2
} message space, and anti-periodic se-

quences use {−1
4
, 1

4
} (and the constant terms of fdiv2 are updated accordingly), all

TBSR computations over [0, 1023] can be done in only 3 TRLWE ciphertexts instead
of 11, which gives a time-speedup of a factor 11/3 = 3.66 compared to the basic
scheme.

79

Chapter 4. TFHE: building blocks and leveled constructions

80

Chapter 5

Bootstrapped TFHE

The schemes and the techniques described in previous chapter can be used in a
leveled context, where the depth of the circuit to be evaluated is known in advance.
But this is not always the case. Several applications require computations with
inde�nite depth: in this case, we need to control and reduce periodically the noise
growth. The bootstrapping technique, introduced by Gentry and largely improved
later, is a solution to this problem.
Bootstrapping reduces the noise produced during the homomorphic computations
and brings it back to a �xed level. Unfortunately, this procedure is the most
expensive in the entire set of homomorphic computations. Moreover, its cost
increases the more the noise needs to be reduced. At this point, the real question
about bootstrapping concerns how often it has to be used to make the computations
less expensive. Explicitly, it is better to perform a relatively fast bootstrapping
after every elementary operation or a slow bootstrapping after the evaluation of an
entire leveled circuit? Again, it depends on the application, the type of functions to
be evaluated and the number of inputs and outputs.

The �rst bootstrapping solution we propose in this chapter is the gate bootstrapping,
called this way because it is performed after every homomorphic binary gate (AND,
NAND, OR, XOR, etc.).
In the GSW context, the bootstrapping had polynomial complexity in [GSW13]
and [AP14]. The fastest bootstrapping was proposed in 2015 by Ducas and Miccian-
cio [DM15]. They used ring operations and construct an �external� bootstrapping
for LWE via GSW, while before the bootstrapping proposed worked only with GSW
ciphertexts. Ducas and Micciancio build the �FHE brick�: a bootstrapped NAND gate.
It is known that by composing NAND gates it is possible to construct any Boolean
circuit. If the homomorphic version of this gate is able to keep the noise growth
always at the same level, it can be used to construct any kind of fully homomorphic
circuit. Their method is incredibly fast, compared to all previous solutions. They
perform a fast bootstrapping in less than a second. Of course, as the bootstrapping
needs to be performed after every NAND gate, the evaluation of a complex circuit is

81

Chapter 5. Bootstrapped TFHE

still slow, compared to the plaintext evaluation. But their result marks a turning
point.
We improved the result of [DM15] in [CGGI16a] and [CGGI17a]. We made their
bootstrapping faster (and called it gate bootstrapping for the �rst time) and we
build all the bootstrapped gates (not only NAND). We also show that this technique
has even more potential: it allows to change the message space and evaluate more
complex functions.

The second bootstrapping solution we propose is the circuit bootstrapping, called
this way because it can be used after the evaluation of a larger leveled circuit. We
introduced this technique in [CGGI17a].
Circuit bootstrapping is able to convert a TLWE sample in a TRGSW ciphertext.
The main reason why we needed this technique is the non-composability of some of
the techniques previously presented. The CMux (Section 3.2.4), for instance, takes as
input two TRLWE and one TRGSW ciphertexts, and outputs a TRLWE ciphertext.
This implies that the TRGSW ciphertexts are always given as fresh ciphertexts.
Full composability is not allowed in this case1. As TRGSW ciphertexts in the CMux

evaluation encrypt a single bit, it is su�cient to e�ciently convert a TLWE back to a
TRGSW. This allows to produce new TRGSW ciphertexts anytime we need them and
to �nally make all the blocks composable. This technique, composed with the ones
we described before, closes the loop, because it allows to go trough all the message
spaces, potentially without limitations.
Circuit bootstrapping can be used both in the fully and in the leveled contexts.
In particular, in the leveled mode, it can be seen as a support to improve leveled
evaluations.

In the rest of the chapter, we detail these two techniques. Practical applications and
comparisons between them are presented in Chapter 6.

5.1 Gate bootstrapping (TLWE-to-TLWE)

Given a TLWE sample TLWEK(µ) = (a, b), the gate bootstrapping procedure con-
structs another TLWE encryption of µ (or of a multiple of µ, or even of a di�erent
message in T depending on the value of the original phase) under the same key
K but with a �xed amount of noise. As in [DM15], we use TRLWE as an interme-
diate encryption scheme to homomorphically evaluate the phase, but we use the
external product from Theorem 3.2.1 (instead of the internal TRGSW product used
in [DM15]) with a TRGSW encryption of the bits of the secret key.
We start by describing the bootstrapping from TLWE to TLWE, as the composition

1If instead the CMux is constructed by using the internal product, the composability is still
possible.

82

5.1 Gate bootstrapping (TLWE-to-TLWE)

between a blind rotation and an extraction. Then, the gate bootstrapping can be
obtained by adding a �nal key switching.

De�nition 5.1.1 (Bootstrapping key). Let K ∈ Bn, K′ ∈ BN [X]n
′
and α be a

standard deviation. We de�ne the bootstrapping key BKK→K′,α as the sequence of n
TGSW samples where BKi ∈ TRGSWK′,α(Ki).

Algorithm 10 Bootstrapping TLWE-to-TLWE (calling algorithm 5)

Input: A constant µ1 ∈ T, a TLWE sample c = (a, b) ∈ TLWEK,η(x · 1
2
), with x ∈ B

a bootstrapping key BKK→K̄,ᾱ = (BKi)i∈J1,nK,
Output: A TLWE sample c̄ = (ā, b̄) = Bootstrapµ1,BK(c) ∈ TLWEK̄,η̄(x · µ1)
1: Let µ2 = 1

2
µ1 ∈ T (Pick one of the two possible values)

2: Let b̃ = b2N̄be and ãi = b2N̄aie ∈ Z for each i ∈ J1, nK
3: Let v := (1+X+ . . .+XN̄−1) ·X N̄

2 · µ2 ∈ TN̄ [X]
4: ACC← BlindRotate((0, v), (ã1, . . . , ãn, b̃), (BK1, . . . ,BKn))
5: Return (0, µ2) + SampleExtract(ACC)

Theorem 5.1.1 (Bootstrapping TLWE-to-TLWE). Let H̄ be the gadget matrix in
M(k̄+1)¯̀,k̄+1(TN̄ [X]) and DecH̄,β̄,ε̄ its e�cient approximate gadget decomposition al-

gorithm, with quality β̄ and precision ε̄ de�ning TRLWE and TRGSW parame-
ters. Let K ∈ Bn and K̄ ∈ Bn̄ be two TLWE secret keys, and K̄ ∈ BN̄ [X]k̄ be
the TRLWE interpretation of the key K̄, and let ᾱ ∈ R≥0 be a standard devia-
tion. Let BKK→K̄,ᾱ be a bootstrapping key, composed by the n TRGSW encryptions
BKi ∈ TRGSWK̄,ᾱ(Ki) for i ∈ J1, nK. Given one constant µ1 ∈ T, and one sample
c ∈ Tn+1 whose coe�cients are all multiples of 1

2N̄
, Algorithm 10 outputs a TLWE

sample c̄ = Bootstrapµ1,BK(c) ∈ TLWEK̄(µ) where µ = 0 i�. |ϕK(c)| < 1
4
, µ = µ1

otherwise and such that:

• ‖Err(̄c)‖∞ ≤ n(k̄ + 1)¯̀N̄ β̄ĀBK + n(1 + k̄N̄)ε̄ (worst case),

• Var(Err(̄c)) ≤ n(k̄ + 1)¯̀N̄ β̄2ϑ̄BK + n(1 + k̄N̄)ε̄2 (average case),

where ĀBK is the amplitude of BK and ϑ̄BK its variance s.t. Var(Err(BKK→K̄,ᾱ)) = ᾱ2.

Proof. By using the de�nitions of b̃ and ã given at line 2 of the Algorithm 10, we
de�ne ϕ̃ := b̃−∑n

i=1 ãisi mod 2N . We have

∣∣∣ϕ− ϕ̃

2N

∣∣∣ = b− b2Nbe
2N

+

n∑

i=1

(
ai−
b2Naie

2N

)
Ki ≤

1

4N
+

n∑

i=1

1

4N
≤ n+ 1

4N
= δ. (5.1)

And if the coe�cients ã1, . . . , ãn, b̃ ∈ 1
2N

Z/Z, then ϕ = ϕ̃
2N

. In all cases, |ϕ− ϕ̃
2N
| < δ.

83

Chapter 5. Bootstrapped TFHE

At line 3, the test vector v := (1+X+ . . .+XN̄−1) ·X N̄
2 · µ2 is de�ned such that for

all p ∈ [0, 2N], the constant term of X−p · v is either µ2 if p ∈K N̄
2
, 3N̄

2
K, and −µ2

otherwise.
At line 4, a blind rotation (Algorithm 5) is applied to the test vector. The result is
msg(ACC) = X−ϕ̃ · v and the error (from the results shown in Theorem 4.1.3 and
as the TRLWE encryption of the test vector is noiseless trivial) is:

• ‖Err(ACC)‖∞ ≤ n(k̄ + 1)¯̀N̄ β̄ĀBK + n(1 + k̄N̄)ε̄, in the worst case,

• Var(Err(ACC)) ≤ n(k̄ + 1)¯̀N̄ β̄2ϑ̄BK + n(1 + k̄N̄)ε̄2, in the average case.

The SampleExtract at line 5 doesn't add any noise, so the error after bootstrapping
remains the same as after the blind rotation.
After the blind rotation, the message in the accumulator is msg(ACC) = X−ϕ̃ · v.
After SampleExtract, the message is equal to the constant term of msg(ACC), i.e.
µ2 if ϕ̃ ∈K N̄

2
, 3N̄

2
K, and −µ2 otherwise. The addition with (0, µ2) makes the message

equal to µ1 if ϕ̃ ∈K N̄
2
, 3N̄

2
K, and equal to 0 otherwise.

In other words, |ϕK(a, b)| < 1/4− δ, then −1/4 + δ ≤ ϕK(a, b) < 1/4− δ, and thus
using Equation (5.1), we obtain that ϕ̃ ∈K − N

2
, N

2
J and thus, the message is equal

to 0. And if |ϕK(a, b)| > 1/4 + δ then ϕK(a, b) > 1/4 + δ or ϕK(a, b) < −1/4− δ and
using Equation (5.1), we obtain that the message is equal to µ1.

Algorithm 10 is the latest version of the bootstrapping from TLWE to TLWE, it
is proposed in [CGGI17a], and it has some common points with Algorithms 1, 2
in [DM15] and Algorithm 3 in [CGGI16a].

• Like [DM15] and [CGGI16a], we rescale the computation of the phase of the
input TLWE sample so that it is modulo 2N (line 2) and we map all the
corresponding operations in the multiplicative cyclic group {1, X, . . . , X2N−1}.
Since our TLWE samples are described over the real torus, the rescaling is
done explicitly. This rescaling may induce an accumulated rounding error of
amplitude at most δ ≈ √n/4N in the average case and δ ≤ (n + 1)/4N in
the worst case. In the best case, this amplitude can even be zero (δ = 0) if in
the actual representation of TLWE samples, all the coe�cients are restricted
to multiples of 1

2N
.

• As in [DM15] and [CGGI16a], messages are encoded as roots of unity in ZN [X].
Our accumulator is a TRLWE sample (as in [CGGI16a]) instead of a TRGSW
sample (as in [DM15]). Also accumulator operations use the external product
from Theorem 3.2.1 instead of the slower classical internal product. The test
vector (1+X+ . . .+XN−1) is embedded in the accumulator from the very start,
when the accumulator is still noiseless while in [DM15], it is added at the very
end. This removes a factor

√
N to the �nal noise overhead.

84

5.1 Gate bootstrapping (TLWE-to-TLWE)

• Instead of the explicit loop proposed in [DM15] and in [CGGI16a], we directly
use the blind rotation Algorithm 5. As in [CGGI16a], all the TRGSW cipher-
texts ofX−ãiKi required to update the accumulator internal value are computed
dynamically as a very small polynomial combination of BKi in the for loop of
the Algorithm 5. This completely removes the need to decompose each ãi on
an additional base Br, and to precompute all possibilities in the bootstrap-
ping key. In practice, this makes our bootstrapping key 46 times smaller than
in [DM15], for the exact same noise overhead. Besides, due to this squashing
technique, two accumulator operations were performed per iteration instead
of one in our case. This gives us an additional 2× speed up. Also, a small
di�erence in the way we associate CMux operations in Algorithm 5 removes a
factor 2 in the noise compared to the previous gate bootstrapping procedure
in [CGGI16a], and it is also faster. The speed ups have been obtained on a
64-bit (single core) Intel Core i7-4910MQ at 2.90GHz laptop, for 159-bits of
security: more details are given in Chapter 6.

The bootstrapping from Algorithm 10 takes in input a TLWE ciphertext, and depend-
ing on its phase, it outputs either a ciphertext of 0 or of µ1 with a noise amplitude
that is independent on the input. However, the input and output ciphertexts are
not encrypted with the same key, since K and K have not the same parameters. The
next elementary theorem �xes this by applying a key switching (Theorem 4.1.1) at
the end of the bootstrapping.

Algorithm 11 Gate Bootstrapping (calling Algorithms 10 and 2)

Input: A constant µ1 ∈ T, a TLWE sample c = (a, b) ∈ TLWEK,η(x · 1
2
), with x ∈ B

a bootstrapping key BKK→K̄,ᾱ = (BKi)i∈J1,nK, a key-switching key KSK̄→K,γ,t =(
KS

(id)
i,j

)
i∈J1,n̄K,j∈J1,tK

Output: A TLWE sample c′ = (a′, b′) = GateBootstrapµ1,BK,KS(c) ∈ TLWEK,η(x · µ1)
1: c̄← BootstrappingTLWEtoTLWE(µ1, c,BKK→K̄,ᾱ)
2: Return c′ ← PublicKeySwitchingTLWEtoTLWE(̄c, Identity,KSK̄→K,γ,t)

Theorem 5.1.2 (Gate Bootstrapping TLWE-to-TLWE). Let H̄ be the gadget matrix
in M(k̄+1)¯̀,k̄+1(TN̄ [X]) and DecH̄,β̄,ε̄ its e�cient approximate gadget decomposition

algorithm, with quality β̄ and precision ε̄ de�ning TRLWE and TRGSW parameters.
Let K ∈ Bn and K̄ ∈ Bn̄ be two TLWE secret keys, and K̄ ∈ BN̄ [X]k̄ be the TRLWE
interpretation of the key K̄, and let ᾱ ∈ R≥0 be a standard deviation. Let BKK→K̄,ᾱ be
a bootstrapping key, composed by the n TRGSW encryptions BKi ∈ TRGSWK̄,ᾱ(Ki)

for i ∈ J1, nK. Let KS = KSK̄→K,γ,t =
(
KS

(id)
i,j

)
i,j
, with KS

(id)
i,j ∈ TRLWEK′,γ(

Ki
2j

) be

a key-switching key de�ned as in Theorem 4.1.2 (with the function f equal to the
identity function id : T→ T). Given one constant µ1 ∈ T, and one sample c ∈ Tn+1

85

Chapter 5. Bootstrapped TFHE

whose coe�cients are all multiples of 1
2N̄

, Algorithm 11 outputs a TLWE sample
c′ = GateBootstrapµ1,BK,KS(c) ∈ TLWEK(µ) where µ = 0 i�. |ϕK(c)| < 1

4
, µ = µ1

otherwise and such that:

• ‖Err(c′)‖∞ ≤ n(k̄ + 1)¯̀N̄ β̄ĀBK + n(1 + k̄N̄)ε̄+ n̄2−(t+1) + tn̄AKS (worst case),

• Var(Err(c′)) ≤ n(k̄ + 1)¯̀N̄ β̄2ϑ̄BK + n(1 + k̄N̄)ε̄2 + n̄2−2(t+1) + tn̄ϑKS (average
case),

where ĀBK and ϑ̄BK = ᾱ2 are respectively the amplitude and the variance of the error
of BK, and AKS and ϑKS = γ2 are respectively the amplitude and the variance of the
error of KS.

The idea of bootstrapping can be summarized in Figure 5.1. The torus is divided in
2N slices and an output value, encoded in the anticyclic test vector v (vN+i = −vi), is
assigned to every slice. In the bootstrapping we just described, only 2 values (µ2 and
its opposite) are assigned to the coe�cients of the test vector. But the technique can
be generalized to multiple values and it can be used to evaluate di�erent functions.

0

1
2

1
4

3
4 . .

.

v0

v1

v2

vi

vi+1

v2N−1

Figure 5.1: Bootstrapping - depending on where it is the phase of the input TLWE
sample (big torus), the bootstrapping selects a new output TLWE sample (i.e. one of
the small torus).

Fully Homomorphic Boolean Gates.

As in [DM15], the homomorphic evaluation of a NAND gate between TLWE sam-
ples is achieved with 2 additions (one with a noiseless trivial sample) and a gate
bootstrapping (Algorithm 11).
We chose the parameters such that Var(Err(c′)) < 1

16
and we denote as

c′ = GateBootstrap 1
4
,BK,KS(c) the output of the gate bootstrapping (Algorithm 11,

86

5.1 Gate bootstrapping (TLWE-to-TLWE)

with µ1 = 1
4
).

Let us consider two TLWE samples c1 and c2, with message space {0, 1/4} and
‖Err(c1)‖∞, ‖Err(c2)‖∞ ≤ 1

16
. The result of the bootstrapped NAND gate is obtained

by computing c = (0, 5
8
) − c1 − c2, plus a gate bootstrapping. Indeed the possible

values for the messages of c are 5
8
, 3

8
(upper part of the torus, encoding 1/2) if

either c1 or c2 encode 0, and 1
8
(lower part of the torus, encoding 0) if both encode

1
4
. Since the noise amplitude ‖Err(c)‖∞ is < 1

8
, then |ϕK(c)| > 1

4
if and only if

NAND(msg(c1),msg(c2)) = 1. This explains why it su�ces to bootstrap c with
parameters µ1 = 1

4
to get the answer.

By using a similar approach, it is possible to directly evaluate with a single boot-
strapping all the basic gates:

• HomNOT(c) = (0, 1
4
)− c (no bootstrapping is needed);

• HomAND(c1, c2) = GateBootstrap 1
4
,BK,KS

(
(0,−1

8
) + c1 + c2

)
;

• HomNAND(c1, c2) = GateBootstrap 1
4
,BK,KS

(
(0, 5

8
)− c1 − c2

)
;

• HomOR(c1, c2) = GateBootstrap 1
4
,BK,KS

(
(0, 1

8
) + c1 + c2

)
;

• HomXOR(c1, c2) = GateBootstrap 1
4
,BK,KS (2 · (c1 − c2)).

Remark 5.1.1. The HomXOR(c1, c2) gate can be achieved also by performing
GateBootstrap 1

4
,BK,KS (2 · (c1 + c2)). Other binary homomorphic gates can be con-

structed by following the same footprint.

Remark 5.1.2. The term gate bootstrapping refers to the fact that this fast boot-
strapping is performed after every gate evaluation, but it can be used even if we do
not need to evaluate a speci�c gate and we just want to refresh noisy ciphertexts.

The ternary MUX gate (MUX(c, d0, d1) = c?d1:d0 = (c ∧ d1) ⊕ ((1 − c) ∧ d0), for
c, d0, d1 ∈ B) is generally expressed as a combination of 3 binary gates. As already
mentioned in [DM15], we can improve the MUX evaluation by performing the middle
⊕ as a regular addition before the �nal KeySwitching. Indeed, this xor has at most
one operand which is true, and at this location, it only a�ects a negligible amount
of the �nal noise. Overall, the ternary MUX gate can be evaluated in FHE mode by
evaluating only two bootstrappings and one public key switching. We call this proce-
dure native MUX, and we note it HomMUX as the other bootstrapped homomorphic
gates, which computes:

• c ∧ d1 via a bootstrapping (Algorithm 10):

c̄1 = Bootstrap 1
4
,BK

((
0,−1

8

)
+ c + d1

)
;

87

Chapter 5. Bootstrapped TFHE

• (1− c) ∧ d0 via a bootstrapping (Algorithm 10):

c̄2 = Bootstrap 1
4
,BK

((
0,

1

8

)
− c + d0

)
;

• A �nal public key switching (Algorithm 2) of the sum c̄1 + c̄2, which dominates
the noise:

d = PublicKS
(Id)
KS (c̄1 + c̄2).

Figure 5.2 summarizes the general idea.

(
0,−1

8

)
+ c + d1

(
0, 1

8

)
− c + d0

Bootstrapping

Bootstrapping

+ Pub-KeySwitch d

Figure 5.2: Native MUX(c,d0,d1)

This HomMUX is therefore bootstrappable with the same parameters for the other
binary gates. The following lemma, which is a direct consequence of of Theorem 5.1.1
and Theorem 4.1.1, gives the explicit noise analysis.

Lemma 5.1.1 (Bootstrapped homomorphic native MUX gate). Under the same
hypothesis of Theorem 5.1.1 and 4.1.1, assuming c, d0, d1 ∈ Tn+1 are three TLWE
samples whose coe�cients are all multiples of 1

2N̄
, Then, the result of the evluation

of MUX(c, d1, d0) is a TLWE sample d ∈ TLWEK((x?x1 : x0) · 1
4
) such that

• ‖Err(̄c)‖∞ ≤ 2 · (n(k̄ + 1)¯̀N̄ β̄ĀBK + n(1 + k̄N̄)ε̄) + n̄2−(t+1) + tn̄AKS (worst
case),

• Var(Err(̄c)) ≤ 2 · (n(k̄+1)¯̀N̄ β̄2ϑ̄BK +n(1+ k̄N̄)ε̄2)+ n̄2−2(t+1) + tn̄ϑKS (average
case),

where ĀBK and ϑ̄BK = ᾱ2 are respectively the amplitude and the variance of the error
of the bootstrapping key BK, and AKS and ϑKS are respectively the amplitude and the
variance of the error of the key-switching key KS.

In the rest of the paper, when we compare di�erent homomorphic techniques, we
refer to the gate bootstrapping mode as the technique consisting in evaluating small
circuits expressed by using these bootstrapped gates.

88

5.2 Circuit bootstrapping (TLWE-to-TRGSW)

5.2 Circuit bootstrapping (TLWE-to-TRGSW)

In the previous chapter, we presented e�cient leveled algorithms to evaluate some
arithmetic operations. These techniques are more e�cient than before because they
use the external product 3.2.10 from [CGGI16a] and [BP16] instead of the classical
internal TRGSW product, but the inputs (TRLWE and TRGSW) and output (only
TRLWE) have di�erent types. As a consequence, we can not always compose these
operations, like in a usual algorithm. A possible solution to solve this problem is
to have an e�cient bootstrapping between TLWE and TRGSW ciphertexts: TLWE
is su�cient, as in our applications the TRGSW ciphertexts encrypt only a bit of
information.
Fast bootstrapping procedures have been proposed in [DM15] and [CGGI16a].
Unfortunately, these bootstrappings cannot output GSW ciphertexts. On the other
hand, previous solutions proposed in [GSW13], [AP14] and [GINX14] based on the
internal product are not practical. In this section, we propose an e�cient technique
to convert back TLWE ciphertexts to TRGSW (running in just 137ms, on a 64-bit
(single core) Intel Core i7-4910MQ at 2.90GHz laptop, for 152-bits of security, see
Chapter 6) that we call circuit bootstrapping.

Our goal is to convert a TLWE sample with large noise amplitude over some binary
message space (e.g amplitude 1

4
over {0, 1

2
}), into a TRGSW sample with a low noise

amplitude over the integer message space {0, 1}.
In all previous constructions, the TLWE decryption consists in a circuit, which is
then evaluated using the internal addition and multiplication laws over TRGSW ci-
phertexts. The target TRGSW ciphertext is thus the result of an arithmetic expres-
sion over TRGSW ciphertexts. Instead, we propose a more e�cient technique, which
reconstructs the target directly from its very sparse internal structure. Namely, a
TRGSW ciphertext C of a message µ ∈ {0, 1} is a vector of (k+ 1)` TRLWE cipher-
texts.

C = Z + µH =

TRLWEK(0)
...

TRLWEK(0)
...

TRLWEK(0)
...

TRLWEK(0)

+ µ ·

1/Bg . . . 0
...

. . .
...

1/B`
g . . . 0

...
. . .

...
0 . . . 1/Bg
...

. . .
...

0 . . . 1/B`
g

Each of these TRLWE ciphertexts encrypts the same message as µ · hi, where hi is
the corresponding line of the gadget matrix H. We denote the rows of the TRGSW
ciphertext as c(u,w), where u is the bloc index (u = 1, . . . , k + 1) and w is the line
index (w = 1, . . . , `) in the u-th bloc of C. Then, the line c(u,w) encrypts the message

89

Chapter 5. Bootstrapped TFHE

is −µ · Ku
Bwg

, where Ku is the u-th polynomial of the secret TRLWE/TRGSW key K
and Kk+1 = −1.
In order to do the reconstruction (line by line), we can use ` times the TLWE-to-
TLWE bootstrapping (Algorithm 10) to obtain a TLWE sample of each message in
{µB−1

g , . . . , µB−`g }. Then we use the private key switching (Algorithm 3) technique to
�multiply� these ciphertexts by the secret −Ku, to reconstruct the correct message.

TLWEK

(
µ · 1

2

)

TLWEK̄

(
µ · 1

Bg

)

TLWEK̄

(
µ · 1

B2
g

)

. . .

TLWEK̄

(
µ · 1

B`g

)

TRLWEK
(
−µ · K1

Bg

)

TRLWEK
(
−µ · K2

Bg

)

. . .

TRLWEK
(
−µ · Kk+1

Bg

)

. . .

TRLWEK
(
−µ · K1

B`g

)

TRLWEK
(
−µ · K2

B`g

)

. . .

TRLWEK
(
−µ · Kk+1

B`g

)

Bootstrapping
TLWE-to-TLWE

Priv-KeySwitch

Figure 5.3: Circuit bootstrapping

Once each line has been constructed, we just compose them in the right order to
obtain the TRGSW encryption of the message µ ∈ B.

Our circuit bootstrapping, detailed in Algorithm 12, crosses 3 levels of noise and en-
cryption. Each level has its own key and parameters set. In order to distinguish the
di�erent levels, we use an intuitive notation with bars. The upper bar will be used
for level 2 variables, the under bar for the level 0 variables and level 1 variables will
remain without any bar. The main di�erence between the three levels of encryption
is the amount of noise supported. Indeed, the higher the level is, the smaller is the
noise. Level 0 corresponds to ciphertexts with very large noise (about α ≈ 2−15).
Level 0 parameters are very small, computations are almost instantaneous, but
only a very limited amount of linear operations are tolerated. Level 1 corresponds
to medium noise (about α ≈ 2−30). Ciphertexts in level 1 have medium size param-
eters, which allows to execute relatively fast operations, and for instance a leveled

90

5.2 Circuit bootstrapping (TLWE-to-TRGSW)

homomorphic evaluation of a relatively large automata. Level 2 corresponds to
ciphertexts with small noise (about ᾱ ≈ 2−45). This level corresponds to the limit of
what can be mapped over native 64-bit operations. Figure 5.4 summarizes our levels
(not corresponding to the classical multiplicative depth) and the operations we per-
form in each one of them. Practical values and further details are given in Chapter 6.

Ring Scalar

Level 	2 key: K̄

Level 1 key: K key: K

Level 0 key: K

Priva
teKS

KSK̄→K,
γ

SampleExtract
K → K

pre-PublicKS
K→ K

Bootstrapping

BKK→K̄,ᾱ

Eval
Circuit

Figure 5.4: The �gure represents the three levels of encryption on which our con-
struction operates. The arrows show the operations that can be performed inside each
level or how to move from a level to another. In order to distinguish the objects with
respect to their level, we adopted the intuitive notations �superior bar� for level 2,
�no bar� for level 1 and �under bar� for level 0. We highlight in blue the di�erent
stages of the circuit bootstrapping (whose detailed description is given below). The
leveled homomorphic circuits are evaluated at level 1. Once we want to perform a
circuit bootstrapping, we perform a sample extract (from TRLWE to TLWE) and a
pre-public key switching to bring the extracted TLWE at level 0.

As we mentioned before (and as we illustrate in Figure 5.3), our circuit bootstrapping
consists in two main parts: bootstrapping and private key switching. An additional
pre-public key switching have to be performed before the circuit bootstrapping to
bring the TLWE sample to level 0. In fact, the main leveled circuit evaluations are
done at level 1.

1. TLWE-to-TLWE pre-public key switching: The input of the algorithm is a
TLWE sample at level 1 with a large noise amplitude over the message space
{0, 1

2
}. Without loss of generality, it can be key switched to a level 0 TLWE

ciphertext c = (a, b) ∈ TLWEK,η(µ · 1
2
), of a message µ ∈ B with respect to

the small secret key K ∈ Bn and a large standard deviation η ∈ R (typically,
η ≈ 2−5 to guaranty correct decryption with overwhelming probability). This
step is standard.

91

Chapter 5. Bootstrapped TFHE

2. TLWE-to-TLWE bootstrapping: Given a level 2 bootstrapping key
BKK→K̄,ᾱ = (BKi)i∈J1,nK where BKi ∈ TRGSWK̄,ᾱ(Ki), we use ` times the TLWE-
to-TLWE bootstrapping algorithm (Algorithm 10) on c, to obtain ` TLWE ci-
phertexts c̄(1), . . . , c̄(`) where c̄(w) ∈ TLWEK̄,η̄(µ · 1

B̄g
w), with respect to the level

2 secret key K̄ ∈ Bn̄, and with a �xed noise parameter η̄ ∈ R which does not
depend on the input noise. If the bootstrapping key has a level 2 noise ᾱ, we
expect the output noise η̄ to remain smaller than level 1 value.

3. TLWE-to-TRLWE private key switching: Finally, to reconstruct the �nal
TRGSW ciphertext of µ, we simply need to craft a TRLWE ciphertext which
has the same phase as µ · hi, for each row of the gadget matrix H. Since hi

contains only a single non-zero constant polynomial in position u ∈ J1, k + 1K
whose value is 1

Bwg
where w ∈ J1, `K, the phase of µ · hi is −µ · KuBwg where Ku

is the u-th term of the key K. If we call fu the (secret) morphism from T to
TN [X] de�ned by fu(x) = −Ku ·x, we just need to apply fu homomorphically
to the TLWE sample c̄(w) to get the desired TRLWE sample. Since fu is 1-
lipschitzian (for the in�nity norm), this operation can be done with additive
noise overhead via the private functional key switching (Algorithm 3).

Algorithm 12 Circuit Bootstrapping (calling algorithms 10 and 3)

Input: A level 0 TLWE sample c = (a, b) ∈ TLWEK,η(µ· 12), with µ ∈ B , a bootstrap-
ping key BKK→K̄,ᾱ = (BKi ∈ TRGSWK̄,ᾱ(Ki))i∈J1,nK, k + 1 private key-switching

keys KS(fu)

K̄→K,γ corresponding to the functions fu(x) = −Ku · x when u ≤ k, and
fk+1(x) = 1 · x.

Output: A level 1 TRGSW sample C ∈ TRGSWK,η(µ)
1: for w = 1 to `
2: c̄(w) ← BootstrappingBK, 1

Bwg

(c)

3: for u = 1 to k + 1
4: c(u,w) = PrivKS(KS(fu), c̄(w))
5: Return C = (c(u,w))1≤u≤k+1,1≤w≤`

Theorem 5.2.1 (Circuit Bootstrapping Theorem). Let n, α,N, k,Bg, `,H, ε denote
TRLWE/TRGSW level 1 parameters, and the same variables names with under-
bars/upper-bars for level 0 and 2 parameters. Let K ∈ Bn, K ∈ Bn and K̄ ∈ Bn̄,
be a level 0, 1 and 2 TLWE secret keys, and K,K, K̄ their respective TRLWE inter-
pretation. Let BKK→K̄,ᾱ be a bootstrapping key, composed by the n TRGSW encryp-
tions BKi ∈ TRGSWK̄,ᾱ(Ki) for i ∈ J1, nK. For each u ∈ J1, k + 1K, let fu be the

morphism from T to TN [X] de�ned by fu(x) = −Ku · x, and KSfu
K̄→K,γ = (KS

(u)
i,j ∈

TRLWEK,γ((K̄iKu · 2−j)))i∈J1,n̄K,j∈J1,tK be the corresponding private key-switching key.

92

5.2 Circuit bootstrapping (TLWE-to-TRGSW)

Given a level 0 TLWE sample c = (a, b) ∈ TLWEK(µ · 1
2
), with µ ∈ B, the algorithm

12 outputs a level 1 TRGSW sample C ∈ TRGSWK(µ) such that

• ‖Err(C)‖∞ ≤ n(k̄ + 1)¯̀N̄ β̄ABK + n(1 + k̄N̄)ε̄+ n̄2−(t+1) + n̄tAKS (worst);

• Var(Err(C)) ≤ n(k̄+ 1)¯̀N̄ β̄2ϑ̄BK + n(1 + k̄N̄)ε̄2 + n̄2−2(t+1) + n̄tϑKS (average).

Here ϑ̄BK = ᾱ2 and ABK is the variance and amplitude of Err(BKK→K̄,ᾱ), and ϑKS =
γ2 and AKS are the variance and amplitude of Err(KSK̄→K,γ).

Proof. The output TRGSW ciphertext is correct, because by construction, the i-th
TRLWE component c(u,w) has the correct message msg(µ · hi) = −µ · Ku

Bwg
. The row

c(u,w) is obtained by chaining one TLWE-to-TLWE bootstrapping (Algorithm 10)
with one private key switching (Algorithm 3). The values of maximal amplitude and
variance of Err(C) are directly obtained from the partial results of Theorem 5.1.1
and Theorem 4.1.2. In total, Algorithm 12 performs exactly ` bootstrappings (Al-
gorithm 10), and `(k + 1) private key switchings (Algorithm 3).

Circuit bootstrapping closes the loop that was left open in [CGGI16a]. At this point,
all the message spaces can be linked one to each other by using one of the techniques
previously described. Figure 5.5 summarizes all these connections and operations.

TLWE T
+

TRLWE TN [X]
+

TRGSW ZN [X]

+,�

Z

External TRLWE
product �
(and CMux)

(Gate)
Bootstrapping

PrivateKS
PublicKS

Sample
Extract

Blind
Rotate

Circuit
Bootstrapping

PrivateKS

PublicKS

Figure 5.5: Homomorphic operations: view from the message spaces. Gate and
circuit bootstrappings are highlighted.

93

Chapter 5. Bootstrapped TFHE

94

Chapter 6

Security estimates, practical results

and implementation

This chapter is dedicated to the practical implementation of our TFHE scheme.
The �rst part concerns the semantic security analysis of TFHE: in this section we
express the security parameter λ only as a function depending on the entropy of the
secret key and on the noise level (and not on all other parameters). Our security
analysis is completely based on previous results from the state of the art and it is
fundamental in order to choose the practical parameters.
In the second part we describe in detail our TFHE implementation, which is now
a C/C++ library available in open-source, while in the third part we explicit the
parameters we used in the implementation and the execution timings for several
practical use cases.

6.1 Semantic security

We start this section by shortly recalling the basics on lattices, then we continue
with the semantic security analysis of TFHE.

Lattices in short.

A lattice is a discrete additive subgroup of Rn. Let b1, . . . ,bn ∈ Rn be linearly
independent vectors. Then a lattice is a set of points L = {a1b1+. . .+anbn | ai ∈ Z}.
The set B = {b1, . . . ,bn} is a (not unique) basis of the lattice L. A lattice can be
also denoted by L(B), where

B =

b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...
bn,1 bn,2 · · · bn,n

 ∈Mn×n(R)

95

Chapter 6. Security estimates, practical results and implementation

and the rows are the entries of the vectors b1, . . . ,bn of the basis. So L(B) =
{aB | a ∈ Zn}. As already said, a basis is not unique.
Two bases B and B′ are equivalent, i.e. they generate the same lattice, if and
only if B′ = U · B, where U is an integer unimodular matrix, i.e. integer matrix
with determinant equal to ±1. The multiplication of B with an unimodular matrix
is equivalent to row operations like permutations, negations or additive integer
combinations.

A lattice can be visualized as a grid of points repeated with constant period. This
constant period is actually a parallelepiped, called fundamental parallelepiped : it is
a fundamental region of space (with points of the lattice as vertex) which contains
only one representant of each point. Each fundamental parallelepiped has the same
volume, equal to the determinant of L(B):

det(L) := |det(B)| = volume of the fundamental parallelepiped.

Next to the determinant, it is also important to de�ne the successive minima λk(L),
equal to the smallest radius of a ball containing k linearly independent vectors. In the
particular case of k = 1 we have λ1(L), which is equal to the (euclidean) length of a
shortest non-zero vector of L. The problem of �nding a shortest vector in a lattice is
considered hard to solve, as well as the problem of �nding the closest vector to some
target. We better de�ne these hard problems, by giving their approximate version
(parametrized by γ):

• Shortest Vector Problem (SVPγ): given a basis B, �nd a vector v ∈ L(B) such
that length(v) ≤ γ · λ1(L) (i.e. �nd the shortest vector in a lattice).

• Shortest Independent Vector Problem (SIVPγ): given a basis B, �nd k linearly
independent vectors in L(B) of length ≤ γ · λk(L).

• Closest Vector Problem (CVPγ): given a basis B and a point V (not necessarily
in the lattice), �nd a lattice vector whose distance to V is at most γ.

A lattice basis is not unique. We distinguish two kind of bases: good (or reduced)
bases and bad bases, where good bases are the ones composed by short and almost
orthogonal vectors. Having a good basis makes the lattice problems easier to solve.
It is for this reason that when a bad basis is given, we try to reduce it to a good
basis.
The most known lattice basis reduction algorithms are LLL, a 1982 polynomial time
algorithm by Lenstra, Lenstra and Lovász [LLL82], and BKZ (Blockwise-Korkine-
Zolotarev) by Schnorr and Euchner [SE94]. LLL uses Gram-Schmidt orthogonal-
ization and swaps vectors until the Lovász condition is satis�ed. As a result, it
produces a new basis for a lattice that is size reduced (i.e. has Gram-Schmidt co-
e�cients |µi,j| ≤ 1

2
) and satis�es Lovász condition (i.e. δ‖bi‖2 ≤ ‖bi+1 + µi+1,ibi‖2,

96

6.1 Semantic security

for a certain δ ∈ (1
4
, 1]). BKZ reduces the basis by calling successively LLL and a

SVP oracle on blocks of basis vectors1. The algorithm has been subjected to many
improvements: extreme pruning [GNR10], early termination [HPS11], enumeration
subroutine [Kan83], etc. All these improvements have been collected and imple-
mented in BKZ 2.0.
The quality of an output basis by lattice reduction is measured by the root-Hermite
factor, noted δ0: the shortest non-zero vector b of the reduced basis is such that
‖b‖ ≤ δn0 ·V ol(L)

1
n . This factor is estimated δ0 ∈ (1, 1.1], depending on the blocksize

[APS15].

6.1.1 Security analysis

The TFHE scheme is a GSW-based construction, whose security relies on the hard-
ness of the LWE problem.
In fact, on the asymptotic side, TLWE samples can be equivalently rescaled and
rounded to their closest binary-LWE representative, which in turn can be re-
duced to standard LWE with full secret using the modulus-dimension reduction
from [BLP+13], or the group-switching techniques from [GINX14]. Therefore, the
semantic security of TFHE is asymptotically equivalent to worst-case lattice prob-
lems.
At the time of writing, there is still no reduction between the RingLWE and the
binary-RingLWE instances. There is instead an asymptotic equivalence between
ring [SSTX09, LPR10] and module [LS15] LWE problems for large modulus [AD17].

In this section, we rather focus on the practical hardness of TFHE, and express
its e�ective security parameter λ directly as a function of the entropy of the secret
(noted n) and the error standard deviation (noted α).
Our analysis is based on the methodology proposed in [APS15] and [Alb17]. In their
work, they review many classes of attacks against LWE:

• A direct BDD2 approach with standard lattice reduction. Given many homo-
geneous LWE samples, it is possible to construct a lattice by using the masks
of the samples. Then, the right terms are close points to the lattice. The goal
is to �nd the nearest lattice point: once this point has been found, obtaining
the secret demands to solve a linear system.

• Sieving algorithms, used to solve the SVP.

• A variant of the BKW methods [BKW03]. Indeed, the original method is used

1BKZ-2.0 uses running time and quality predictions to optimize the placement and block sizes
and pruning in the SVP oracles during the reduction.

2Bounded Distance Decoding problem: given a lattice basis and point that is already pretty
close to the lattice, �nd the closest lattice point (similar to the Closest Vector Problem).

97

Chapter 6. Security estimates, practical results and implementation

to solve the Learning Parity with Noise problem, but it can be adapted to
LWE.

• Meet in the middle attacks, proposing a better time-memory trade-o� than
naive brute force attacks.

In general, they found out that there is no single-best attack against all possible
parameters. However, according to their results table [APS15, Section 8, Tables
7,8], for the range of dimensions and noise used for FHE, it appears that the
SIS-distinguisher attack is often the most e�cient attack. Since the modulus q is
not a parameter in our de�nition of TLWE, we need to adapt their results.

We rapidly recall the SIS (Short Integer Solution) problem, presented in 1996 by
Ajtai [Ajt96]: given random vectors a1, . . . , am ∈ Znq , �nd a non-trivial solution
z1, . . . , zm ∈ {−1, 0, 1} such that z1a1 + . . . + zmam = 0 ∈ Znq . This problem is
intimately related with the Shortest Vector Problem.

Heuristics. This section relies on the following heuristics concerning the experi-
mental behaviour of lattice reduction algorithms. They have been extensively veri�ed
and used in practice.

1. The fastest lattice reduction algorithms in practice are blockwise lattice algo-
rithms, like BKZ-2.0[CN11], D-BKZ [MW16], or the slide reduction with large
blocksize [GN08b, MW16]: their quality is measured by using the root-Hermite
factor δ0 de�ned in previous section.

2. Di�erent approaches to evaluate the running time of BKZ-2.0 have been pro-
posed in the literature [ACD+17, CN11, APS15, ADPS16, ACF+15]. In this
section, we use the following estimation in seconds:

log2(tBKZ)(δ0) =
0.009

log2(δ0)2
− 27

according to the extrapolation by Albrecht et al [ACF+15] of Liu-Nguyen
datasets [LN13].

3. The coordinates of vectors produced by lattice reduction algorithms are bal-
anced. Namely, if the algorithm produces vectors of norm ‖v‖2, each coe�cient
has a marginal Gaussian distribution of standard deviation ‖v‖2/

√
n. Provided

that the geometry of the lattice is not too skewed in particular directions, this
fact can sometimes be proved, especially if the reduction algorithm samples
vectors with Gaussian distribution over the input lattice.

4. For mid-range dimensions and polynomially small noise, the SIS-distinguisher
plus lattice reduction algorithms combined with the search-to-decision is the

98

6.1 Semantic security

best attack against LWE (but this point is less clear, according to the analysis
of [ACF+15], at least, this attack model tends to over-estimate the power of
the attacker, so it should produce more conservative parameters).

5. Except for small polynomial speedups in the dimension, we do not know better
algorithms to �nd short vectors in random anti-circulant lattices than generic
algorithms. This folklore assumption seems still up to date at the time of
writing. The most recent asymptotic attacks [CDW17] against ideal lattices
(that appear in our construction) do not reach polynomial noise rates, and
they are not practical.

The SIS-based distinguisher attack against the LWE problem consists in �nding
a small integer combination that cancels the left hand side (i.e. the mask a) of
homogeneous LWE samples. If applying the same combination to the right hand
side (i.e. b) of the samples does not make it small, we can deduce that our inputs
are not LWE samples, but rather uniformly random samples. Such SIS-distinguisher
has in general a small advantage ε. To recover the full key, we use the well
known decision-to-search reduction, which is particularly tight for TLWE: guess
that the �rst key bit is zero, randomize the �rst coordinates of each sample, and
use the distinguisher about 1/ε2 times to amplify its advantage to Θ(1), and to
con�rm whether the result are still TLWE samples, i.e. if our guess of the �rst
key bit is correct. Once a key bit is found, getting the other bits involves solving
lower-dimensional TLWE problems, that are signi�cantly easier. Therefore we
consider that the complexity of the attack is the time needed to �nd the �rst key
bit. We also extend the analysis of [APS15] to handle the continuous torus.

Security Estimation. Let (a1, b1), . . . , (am, bm) be either m TLWE samples of
error standard deviation α or m uniformly random samples in Tn+1. We need to
�nd a small tuple (v1, . . . , vm) ∈ Zm such that the combination of samples

∑
viai is

small (SIS-distinguisher). Most previous models working on a discrete group would
require that this term is exactly zero. By allowing approximations, we may �nd valid
solutions in smaller dimension m than the usual bound n log n. In particular, even
m < n would make sense.
Now, consider the (m + n)-dimensional lattice L, generated by the rows of the
following basis B ∈Mn+m,n+m(R):

B =

1 0
. . . 0

0 1

a1,1 · · · a1,n 1 0
...

. . .
...

. . .

am,1 · · · am,n 0 1

.

99

Chapter 6. Security estimates, practical results and implementation

Our goal is to �nd a short vector w = (x|v) = (x1, . . . , xn, v1, . . . , vm) in the lattice
L(B), whose �rst n coordinates (x1, . . . , xn) =

∑m
i=1 viai mod 1 are shorter than

the second part (v1, . . . , vm).
To do that, we choose a real parameter q > 1 (that will be optimized later), and apply
the unitary transformation fq to the lattice: fq multiplies the �rst n coordinates of
each line by q and the last m coordinates by 1/qn/m. Although this new basis now
looks like a classical LWE matrix, the variable q is a real parameter, rather than an
integer. It then su�ces to �nd a regular short vector with balanced coordinates in
the transformed lattice, de�ned by this basis:

fq(B) =

q 0
. . . 0

0 q

qa1,1 · · · qa1,n
1

qn/m
0

...
. . .

...
. . .

qam,1 · · · qam,n 0 1
qn/m

, with q ∈ R > 1.

To that end, we apply the fastest lattice basis reduction algorithm (BKZ-2.0 or slide
reduction [GN08a]) directly to fq(B), which outputs a vector fq(w) of standard

deviation δn+m
0√
n+m

.

Once we obtain such vector w, all we need is to analyze the term

m∑

i=1

vibi =
m∑

i=1

vi(aiK + ei) = K ·
m∑

i=1

viai +
m∑

i=1

viei = K · x + v · e,

which has Gaussian distribution of variance

σ2 = nS2 · δ
2(m+n)
0

q2(m+ n)
+
q2 n

m δ
2(m+n)
0

m+ n
· α2m

= δ
2(m+n)
0

(
S2

q2
· n

m+ n
+ q2 n

mα2 m

m+ n

)
.

(6.1)

Here S = ‖s‖√
n
≈ 1√

2
. This distribution may be distinguished from the uniform dis-

tribution with advantage ε when σ2 is equal to the smoothing variance 1
2π
η2
ε(Z).

To summarize, the security parameter of LWE is bounded by the solution of the
following system of equations

λ(n, α) = log2(tattack) = min
0<ε<1

log2

(
1

ε2
tBKZ(n, α, ε)

)
(6.2)

log2(tBKZ)(n, α, ε) =
0.009

log2(δ0)2
− 27 (6.3)

100

6.2 TFHE: Fast Fully Homomorphic Encryption over the Torus

ln(δ0)(n, α, ε) = max
m>1
q>1

1

2(m+n)

(
ln

(
1

2π
η2
ε(Z)

)
− ln

(
S2

q2

n

m+n
+ q

2n
m α2 m

m+n

))

(6.4)
1

2π
η2
ε(Z) ≈ 1

2π2
ln

(
2

ε

)
. (6.5)

Here, Equation (6.2) means that we need to run the distinguisher 1
ε2
times (by Cher-

no�'s bound), and we need to optimize the advantage ε accordingly. 3 Equation (6.3)
is the heuristic prediction of the running time of BKZ-2.0 reduction. Equation (6.4)
follows from Equation (6.1): q and m need to be chosen in order to maximize the
targeted approximation factor of the lattice reduction step.
Di�erentiating Equation (6.4) in q, we �nd that its maximal value is

qbest =

(
S2

α2

) m
2(m+n)

.

Replacing this value and setting t = n
m+n

, Equation (6.4) becomes:

ln(δ0)(n, α, ε) = max
t>0

1

2n

(
t2`2 + t(1− t)`1

)
where

`1 = ln

(
η2
ε(Z)

2πα2

)

`2 = ln
(
η2
ε(Z)

2πS2

)
.

Finally, by di�erentiating this new expression in t, the maximum of δ0 is reached for
tbest = `1

2(`1−`2)
, because `1 > `2, which gives the best choices of m and q and δ0.

Finally, we optimize ε numerically in Equation (6.5).

All previous results are summarized in Figure 6.1, which displays the security pa-
rameter λ as a function of n and log2(α). The �gure is useful for the practical choice
of the parameters, in particular from an user point of view. The idea is that when
it comes to implementation, we know what is the security level we want to achieve,
i.e. λ, and we know the limits of our implementation tools (memory, computational
power and native operations supported). This can be translated in the amount of
noise we can deal with and quanti�ed by α. With the curve in Figure 6.1, the
knowledge of λ and α let us easily chose the value of n.

6.2 TFHE: Fast Fully Homomorphic Encryption

over the Torus

In order to have a proof of concept for the techniques described in the main chapters
of this manuscript, we decided to implement the construction in 2016, at the same

3Amplifying a distinguishing advantage from ε to Ω(1) requires at least O(1/ε) and at most
O(1/ε2) trials, depending on the shape of the symmetric di�erence between the two distributions.
Here, the di�erence between a modular Gaussian with large parameter and the uniform distribution
is uniformly small, so we have to apply the upper-bound.

101

Chapter 6. Security estimates, practical results and implementation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000

lo
g

2
(1

/α
)

n

Values of λ(n,α)

 32

 64

 128

 256

 512

5
1
2

384

256

256

192

192

128

128

128

80

80

80
40

40

40

KS Key

BK

BK [DM15]

Figure 6.1: Security parameter λ as a function of n, entropy of the secret, and α,
error standard deviation, for LWE samples - This curve shows the security parameter
levels λ (black levels) as a function of n = kN (along the x-axis) and log2(1/α)
(along the y-axis) for TLWE (also holds for binary-LWE), considering both the attack
of this section and the collision attack in time 2n/2.

time as our work on the gate bootstrapping [CGGI16a].
The implementation is a C/C++ library: the �rst o�cial release has been done
on may 2017 on the TFHE website [CGGI16d]. Two GitHub repositories exist for
TFHE:

1. The library repository [CGGI16c]: containing the code of the library.

2. The experimental repository [CGGI17b]: containing the experimental features
not already included in an o�cial release.

The TFHE library. TFHE is an open source library distributed under the
terms of the Apache 2.0 license, working on Linux and MacOS platforms (not yet
on Windows). The library contains the implementation of the gate bootstrapping
for the evaluation of 10 di�erent binary gates and for the native MUX gate. The

102

6.2 TFHE: Fast Fully Homomorphic Encryption over the Torus

gate bootstrapping corresponds to the one described in [CGGI16a] with the
improvements on the blind rotation proposed in [CGGI17a].

Our primary goal was to simplify as much as possible the use of the library. In the
website, the installation and the usage of TFHE are detailed, and a short tutorial
on a simple use case is given.
The functions implemented for the gate bootstrapping API can be divided in �ve
main families:

• Generation of parameters - including all the functions needed to generate,
delete and import/export in a �le the default parameters. The only value
needed to generate the parameters is the security level: for now a single security
level is supported4.

• Generation of the keys - including all the functions needed to generate,
delete and import/export in a �le the secret keys, used to encrypt/decrypt the
TLWE samples, and the bootstrapping keys, used during the evaluation.

• Manipulation of ciphertexts - including all the functions needed to ini-
tialize, delete and import/export in a �le a ciphertext or an array of TLWE
ciphertexts.

• Encryption and decryption - including the encryption and decryption func-
tions, implemented for the symmetric version of TFHE.

• Homomorphic gates - including all the bootstrapped homomorphic gates
implemented: a constant gate, producing a trivial sample of 0 or 1, the unary
NOT gate and the copy gate, the binary gates NAND, OR (and two composition
with the NOT gate), AND (and two composition with the NOT gate), XOR, XNOR,
NOR, and the ternary MUX native gate.

The execution of unary and trivial gates is immediate. All binary gates are executed
in 13ms and the ternary MUX takes 26ms, on a 64-bit (single core) Intel Core i7-
4910MQ at 2.90GHz laptop.

Gate bootstrapping mode
Time per gate bootstrapping (1 bit) tGB = 13ms
Time per any binary bootstrapped gate (NAND, OR, AND, etc.) tGB = 13ms
Time per bootstrapped MUX 2tGB = 26ms

In many previous implementations, as multiplication was more expensive than
addition, it was almost required to use a dedicated compiler reducing the function

4In the library webpage, the security leveled announced is about 110-bits, but it is actually
∼ 159-bits. More details are given in next section.

103

Chapter 6. Security estimates, practical results and implementation

to its �more FHE friendly form� (see as instance [CDS15]). Instead, as in the gate
bootstrapping mode of TFHE there is no di�erence between the cost of binary
gates, the construction of homomorphic circuits is easier: it su�ces to know the
naive circuit of the function to be evaluated. Every gate in clear is then translated
in its homomorphic bootstrapped version. A circuit composed of a few gates, or
even naive circuits with large depth are evaluated e�ciently with TFHE.

From a theoretical point of view, our scale invariant scheme TLWE is de�ned over
the real torus T, where all the operations are modulo 1. In practice, since we can
work with approximations, we chose to rescale the elements over T by a factor 232,
and to map them to 32-bit integers. Thus, we take advantage of the native mod 232

operations, including for the external multiplication with integers.
The internal functions, on which the API functions (just described) are based, work
with 32-bit and also with 64-bit integers (taking advantage of the same native opera-
tions), and perform polynomial multiplications by using the Fast Fourier Transform
(FFT). Except for some FFT operations, using 32 and 64-bit integers seems more
stable and e�cient than working with �oating point numbers and reducing modulo
1 regularly.

FFT. The library supports three FFT processors and at least one of them is needed
to run the computations: the users can chose which one they want to use and the
resulting performances variate depending on the choice.

1. The Project Nayuki FFT library [Nay], usable in the portable C or with AVX
assembly instructions. We added to their code the reverse FFT functions. The
library is published under the MIT license.

2. Our dedicated Spqlios FFT processor, implemented with AVX and FMA
assembly instructions. The implementation is written following the Nayuki
Project footstep, and is dedicated to the FFT operations over the ring
R[X]/(XN + 1), with N a power of 2.

3. The FFTW3 library (Fastest Fourier Transform in the West) [FJ05], which
is between 2 and 3 times faster than the Nayuki FFT. The library is pub-
lished under the GPL license and it is also used in the FHEW implementation
by [DM15].

AVX and FMA are SIMD �oating point instructions, available on recent processors.
In our TFHE implementation, polynomials mod XN+1 are either represented as the
classical list of the N coe�cients, or using the Lagrange half-complex representation,
which consists in the complex (2 times 64-bits) evaluations of the polynomial over
the roots of unity exp(i(2j+ 1)π/N) for j ∈ J0, N

2
J. Indeed, the N

2
other evaluations

are the conjugates of the �rst ones, and do not need to be stored.

104

6.3 Concrete Parameters

The conversion between both representations is done using our dedicated Spqlios
implementation of the FFT. Note that the direct FFT transform is

√
2N lips-

chitzian, so the Lagrange half-complex representation tolerates approximations,
and 53-bits of precision is indeed more than enough, provided that the real repre-
sentative remains small. However, the modulo 1 reduction, as well as the gadget
decomposition in base H, are not compatible with the Lagrange representation: we
therefore need to regularly transform the polynomials to and from their classical
representation.

Pro�ling the execution shows that the FFTs and complex multiplications are taking
66% of the total time. The remaining time is mostly taken by the key-switching
operation and the decomposition in base H.

Experimental TFHE. The leveled version of the TFHE scheme, with all the
improvements presented in Chapter 4 and the circuit bootstrapping, is not already
included in the o�cial release of TFHE.
The circuit bootstrapping is instead implemented in the experimental repository of
the project [CGGI17b]. In order to execute the circuit bootstrapping, as we work
with di�erent noise levels, we use both 32-bit and 64-bit integer operations.
The execution timing of a circuit bootstrapping is 137ms, on a 64-bit (single core)
Intel Core i7-4910MQ at 2.90GHz laptop.

Future releases. We are planning on release new versions of the TFHE library,
including more features than before.
The �rst features we are planning to add are the asymmetric encryption version
of the scheme, which is practical for real world applications, the compatibility with
Windows operative systems, and the multi-threading, as the library works only with
a single core. In particular, this last improvement could considerably accelerate the
execution timings.
Later, we would also include in the library the leveled mode of the scheme, by
implementing all the improvements presented in Chapter 4, the multi-bit arithmetic
and the circuit bootstrapping, already implemented in the experimental branch.
Furthermore, it could be interesting to allow multiple choices for the security levels
and for the corresponding parameters, as for now the implementation provide a
single parameter set.

6.3 Concrete Parameters

One of the most complicated questions in homomorphic encryption is the choice of
parameters for the scheme. This choice have to take into account many factors: the
security level of the construction, the memory consumption, the execution timings,
etc.

105

Chapter 6. Security estimates, practical results and implementation

In Section 6.1 we expressed the security parameter with respect to the entropy of
the secret key and the noise level of the ciphertexts. The curve we obtained allows
us to choose properly the basic parameters.
But the noise growth in the leveled evaluation and in bootstrapping presents many
additional parameters that have to be chosen in the more convenient way. The
choice can be done by using the noise growth formulas and by balancing them until
we reach a satisfying result.

In this section we give the concrete parameters we used in both gate and circuit
bootstrapping implementations. We often compare our results on gate bootstrapping
with the results obtained in [DM15], and recently improved in the implementation
FHEW [DM17]. We also present some practical results we obtained by testing the
library and the experimental features for several use cases.

6.3.1 Gate bootstrapping Parameters.

In the TFHE library, the gate bootstrapping uses the following parameters.

• TLWE samples use n = 500 and standard deviation σ = 2−7, so their amplitude
is < 1

16
. A TLWE sample has 32 · (n+ 1) bits ≈ 2 KBytes.

• TRLWE samples use N = 1024 and k = 1. This corresponds to (k + 1) ·N · 32
bits ≈ 8 KBytes.

• TRGSW samples use ` = 2 and Bg = 1024. This de�nes the gadget H and
its decomposition DecH,β,ε where β = 512 and ε = 2−21. A TRGSW sample is
composed by (k + 1) · ` TRLWE samples ≈ 32 KBytes.

• The bootstrapping key has n TRGSW samples ≈ 15.6 MBytes. Its noise stan-
dard deviation is α = 3.73·10−9 (∼ 2−28). Section 6.1 results predict about 198
bits of security for our bootstrapping key. In [DM15], the size of the bootstrap-
ping key is of 1 GByte, and its standard deviation is ≈ 2.59 · 10−10 (∼ 2−32).

• We chose t = 16 bits for the key switching: the decomposition has precision
2−17, and the key-switching key is composed by k ·N · t TLWE samples ≈ 32
MBytes. We set the noise standard deviation to γ = 2.16 · 10−5 (∼ 2−15.5),
which is estimated to about 159-bits of security following the results from
Section 6.1.

Correctness. The �nal error variance after bootstrapping is 1.63 · 10−5, by
Theorem 5.1.2. It corresponds to a standard deviation of σ = 4.04 · 10−3. The
noise amplitude after our bootstrapping is < 1

16
with very high probability

erf(1/16
√

2πσ) ≥ 1− 2−58, which is better than ≥ 1− 2−31 in [DM15].

106

6.3 Concrete Parameters

Note that the size of the key-switching key can be reduced by a factor n+ 1 = 501
if all the masks are the output of a pseudo random function: we may for instance
just give the seed. The same technique can be applied to the bootstrapping key, on
which the size is only reduced by a factor k + 1 = 2.
As we announced in previous section, we measured a running time of 13ms per
binary gate bootstrapping, 26ms per bootstrapped MUX and 34µs per external
product, all using the our Spqlios FFT for multiplications. The timings are obtained
by running the library on a 64-bit (single core) Intel Core i7-4910MQ at 2.90GHz
laptop. This seems to correspond to the machine used in [DM15].

n α λ εbest mbest qbest δbest
KS key 500 2.43 · 10−5 159 2−14 497 178.7 1.0052
BK 1024 3.73 · 10−9 198 2−10 1037 14696. 1.0046

BK [DM15] 1024 2.59 · 10−10 149 2−7 1051 60351 1.0064

Figure 6.2: Parameters and security of the Gate bootstrapping - This table pre-
cises the parameters for the key-switching key and the bootstrapping key for our
implementation and for the one in [DM15].

Table 6.2 shows that the strength of the lattice reduction is compatible with the
values announced in [DM15]. Our model predicts that the lattice reduction phase
is harder (δ = 1.0052 in our analysis and δ = 1.0064 in [DM15]), but the value of
ε is bigger in our case. Overall, the security of their parameters-set is evaluated by
our model to 149-bits of security, which is larger than the ≥ 100-bits of security
announced in [DM15]. The main reason is that we take into account the number of
times we need to run the SIS-distinguisher to obtain a non negligible advantage.
Since our scheme has a smaller noise propagation overhead, we were able to raise
the input noise levels in order to strengthen the system, so with the parameters
we chose in our implementation, our model predicts 198-bits of security for the
bootstrapping key and 163-bits for the key-switching key, which becomes the
bottleneck.

Remark 6.3.1 (FHEW). The scheme proposed in [DM15] and implemented
in [DM17] has been recently improved by the authors. The original timing of 0.69
seconds, corresponding to the evaluation of a bootstrapped NAND gate (on a single
64-bits Intel core at 3GHz), has been improved in the last version of their library
and it is now 6× faster than before. The trick they use to improve the bootstrapping
is somehow equivalent to the external product we presented in Chapter 3. Addition-
ally, they add the implementation of more homomorphic gates: AND, OR, NOR and the
unary NOT gate.

107

Chapter 6. Security estimates, practical results and implementation

Experimental validation of the independence assumption. In order to ver-
ify the correctness of our theoretical results and of our implementation when eval-
uating huge circuits, we decided to run a large test. We generated several random
Boolean circuits of depth larger than 10000, composed by a million of bootstrapped
homomorphic gates. We executed them and measured the actual noise of the cipher-
texts. The results we obtained con�rmed the accuracy of the average case theorems
of Section 5.1, and that the noise distribution after bootstrapping is Gaussian. We
summarize these results in Figure 6.3: the light blue histogram is the measured error
distribution after every bootstrapped gate, the purple plain line represents the Gaus-
sian distribution whose variance is predicted by Theorem 5.1.2 using the parameters
presented in this section, and the red dashed line represents the critical Gaussian
distribution for an amplitude of 1

16
. This experimentally validates our independence

heuristic Assumption 3.2.1, even when ciphertexts are re-used in a very large depth
homomorphic circuit.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

Experimental error after bootstrapping
Predicted - Gaussian with stdev=4.05e-3

Critical - Gaussian with stdev=9.62e-3

Figure 6.3: Accuracy of the average case theorems, and experimental validation of
the independence assumption.

108

6.3 Concrete Parameters

6.3.2 Circuit Bootstrapping

The circuit bootstrapping, described in Section 5.2 is not yet included in a o�cial
release of the TFHE library, but we implemented it in the experimental reposi-
tory [CGGI17b] as a proof of concept. The tests show that we can evaluate a circuit
bootstrapping in 0.137 seconds, on a 64-bit (single core) Intel Core i7-4910MQ at
2.90GHz laptop.

One of the main constraints to obtain this performance is to ensure that all the
computations are feasible and correct under 53 bits of �oating-point precision, in
order to use the fast FFT. This requires to re�ne the parameters of the scheme. We
veri�ed the accuracy of the FFT with a slower but exact Karatsuba implementation
of the polynomial product.
In our three levels, we used the following TRLWE and TRGSW parameter sets, which
have at least 152-bits of security, according to the security analysis from Section 6.1.

Level Minimal noise standard dev. n Bg ` λ
0 α = 6.10 · 10−5 (∼ 2−14) n = 500 N.A. N.A. 194
1 α = 3.29 · 10−10 (∼ 2−31.5) n = 1024 Bg = 28 ` = 2 152
2 ᾱ = 1.42 · 10−14 (∼ 2−46) n̄ = 2048 B̄g = 29 ¯̀= 4 289

Since we assume circular security, we use only one key per level, and the following
key-switching parameters (in the leveled setting, the reader is free to increase the
number of keys if he does not wish to assume circularity).

Level t KS noise standard dev. γ Usage
1→ 0 t = 12 γ = 6.10 · 10−5 (∼ 2−14) Circuit Bootstap, Pre-KS
2→ 1 t̄ = 30 γ̄ = 3.29 · 10−10 (∼ 2−31.5) Circuit Bootstap, Step 4 in Alg. 12
1→ 1 t = 24 γ = 2.38 · 10−8 (∼ 2−25.3) TBSR

Thus, we get these noise variances in input or in output.

Output TLWE Fresh TRGSW in LHE TRGSW Output of CB Bootst. key
ϑ ≤ 2−10 ϑ = 2−60 ϑ ≤ 2−48.2 ϑBK = 2−92

And �nally, this table summarizes the timings, noises overhead, and maximal depth
of all our primitives.

CPU Time Var Noise add Max depth
Circuit bootstrap tCB = 137ms N.A. N.A.
Fresh CMux tXP = 34µs 2−23.99 16384
CB CMux tXP = 34µs 2−20.17 1017
PublicKSTBSR tKS = 180ms 2−23.42 16384

109

Chapter 6. Security estimates, practical results and implementation

Comparison with previous bootstrappings for TGSW. The circuit bootstrap-
ping we just described evaluates a quasi-linear number of level-2 external products,
in the bootstrapping part, and a quasi-linear number of level-1 products, in the pri-
vate key-switching part. With the parameters proposed, it runs in 0.137 seconds for
∼ 152-bits of security. Level 2 operations take about 70% of the running time, and
the private key switching the remaining 30%.
Our circuit bootstrapping is not the �rst bootstrapping algorithm that outputs a
TRGSW ciphertext. Many constructions have previously been proposed and achieve
valid asymptotic complexities, but very few concrete parameters are proposed. Most
of these constructions are recalled in the last section of [GINX14]. In all of them,
the bootstrapped ciphertext is obtained as an arithmetic expression on TRGSW ci-
phertexts involving linear combinations and internal products. First, all the schemes
based on scalar variants of GSW su�er from a slowdown of a factor at least quadratic
in the security parameter, because the products of small matrices with polynomial
coe�cients (via FFT) are replaced with large dense matrix products. Thus, boot-
strapping on GSW variants would require days of computations, instead of the 0.137
seconds we propose.
Now, assuming that all the bootstrapping uses (Ring) instantiations of GSW, the
design in [BV14b] based on the expansion of the decryption circuit via Barrington's
theorem, as well as the expression as a minimal deterministic automata of the same
function in [GINX14] would require a quadratic number of internal level 2 TRGSW
products, which is much slower than what we propose. Finally, the CRT variant
in [AP14] and [GINX14] uses only a quasi-linear number of products, but since it
uses composition between automata, these products need to run in level 3 instead of
level 2, which induces a huge slowdown (a factor 240 in our benchmarks), because
elements cannot be represented on 64-bits native numbers.

6.4 Time comparison between di�erent techniques

With these parameters, we analyze the (single-core) execution timings for the
evaluation of three use cases: the LUT, the MAX function and the multiplication.
We give prediction timings5 for these applications in both LHE and FHE mode, by
analyzing many of the techniques proposed in the main chapters of this manuscript.

In the leveled mode all inputs are fresh ciphertexts, either TRLWE or TRGSW: we
compare the previous versions of TFHE, without packing/batching, with the new
optimization using horizontal/vertical packing, det-WFA and TBSR techniques.
In the FHE mode all inputs and outputs are TLWE samples on the {0, 1

2
} message

space with noise amplitude 1
4
. Each operation starts by bootstrapping its inputs.

5The predictions are based on the experimental timings we obtained for the external product,
the key switching and both the gate and circuit bootstrapping.

110

6.4 Time comparison between di�erent techniques

We compare the gate bootstrapping strategy with the mixed versions using leveled
optimized evaluations with circuit bootstrapping.
Our goal is to identify which method is better for each of the 6 cases.

In this section tXP = 34µs indicates the execution timing per external product,
tGB = 13ms indicates the execution timing per gate bootstrapping, tCB = 137ms
indicates the execution timing per circuit bootstrapping and tKS = 180ms indicates
the execution timing per key switching.

LUT In Figure 6.4 we represent the predicted execution timings for the evalua-
tion of a LUT with s = 8-bits of output, in leveled and fully homomorphic modes
respectively.
In the graph, the x coordinate represents the number of input bits d, while the y
coordinate represents the execution timings in seconds, in logarithmic scale.

In the leveled evaluation, we analyze 3 di�erent modes:

• No packing: running in s(2d − 1)tXP.

• Horizontal Packing: running in (2d − 1)tXP.

• Vertical Packing: running in s(2d/N − 1 + logN)tXP.

In the fully homomorphic evaluation, we analyze 3 di�erent modes:

• Gate bootstrapping: running in (d+ 2s(2d − 1))tGB.

• Circuit bootstrapping with horizontal packing: running in dtCB + (2d − 1)tXP.

• Circuit bootstrapping with vertical packing: running in dtCB + s(2d/N − 1 +
logN)tXP.

The graph representing the execution timings on leveled evaluation reveals that the
horizontal packing is the best technique up to 6 − 7 bits of input, then vertical
packing becomes optimal. In fully homomorphic mode, the circuit bootstrapping
with vertical packing is the best technique on the long run.
Observe that compared to the gate bootstrapping, we obtain a huge speed-up for
the homomorphic evaluation of arbitrary function FHE mode. In particular, we can
evaluate a 8 bits to 1 bit LUT and bootstrap the output in just 137ms, or evaluate
an arbitrary 8 bits to 8 bits function in 1.096s, and an arbitrary 16 bits to 8 bits
function in 2.192s.

111

Chapter 6. Security estimates, practical results and implementation

Leveled homomorphic encryption: LUT

30.52*10
-6

976.56*10
-6

31.25*10
-3

1.00*10
0

32.00*10
0

1.02*10
3

32.77*10
3

1.05*10
6

33.55*10
6

 5 10 15 20 25 30

No packing
Horizontal Packing

Vertical Packing

Fully homomorphic encryption: LUT

31.25*10
-3

1.00*10
0

32.00*10
0

1.02*10
3

32.77*10
3

1.05*10
6

33.55*10
6

1.07*10
9

 5 10 15 20 25 30

Gate Bootstrapping
Circuit Bootstrapping HP
Circuit Bootstrapping VP

Figure 6.4: Leveled and fully homomorphic evaluation of LUT (d-bits input and
s = 8-bits output) - The y coordinate represents the running time in seconds (in
logscale), the x coordinate represents the number of bits in the input.

112

6.4 Time comparison between di�erent techniques

MAX function In Figure 6.5 we represent the predicted execution timings for the
evaluation of the MAX function, computing the maximal value between two d-bit
integers, in leveled and fully homomorphic modes respectively.
In the graph, the x coordinate represents the number of input bits d, while the
y coordinate represents the execution timings in seconds. Both coordinates are
represented in logarithmic scale.

In the leveled evaluation, we analyze 2 di�erent modes:

• No packing: running in 3(d(d+ 1)/2)tXP.

• Evaluation via det-WFA: running in 5dtXP.

In the fully homomorphic evaluation, we analyze 2 di�erent modes:

• Gate bootstrapping: running in (2 + 5)dtGB.

• Circuit bootstrapping with det-WFA: running in 2dtCB + 5dtXP.

The graphs reveal that the best technique for leveled evaluation is the use of det-
WFA for inputs of more than 3 bits: for less than 3 bits of input, the evaluation
with no optimization is optimal. For the fully homomorphic evaluation, the gate
bootstrapping mode seems the most interesting choice all the time.

Multiplication Figure 6.6 represents the predicted execution timings for the eval-
uation of the multiplication between two d-bit integers, in leveled and fully homo-
morphic modes respectively.
In the graph, the x coordinate represents the number of input bits d, while the
y coordinate represents the execution timings in seconds. Both coordinates are
represented in logarithmic scale.

In the leveled evaluation, we analyze 3 di�erent modes:

• No packing: running in (d4 + o(d4))tXP.

• Evaluation via det-WFA: running in Θ(d3)tXP (computed by optimization pro-
gram).

• TBSR: running in 2d2tXP + (2d− 2)tKS.

In the fully homomorphic evaluation, we analyze 3 di�erent modes:

• Gate bootstrapping: running in (6d2 − 3d)tGB.

• Circuit bootstrapping with det-WFA: running in 2dtCB + Θ(d3)tXP (computed
by optimization program).

113

Chapter 6. Security estimates, practical results and implementation

Leveled homomorphic encryption: MAX

30.52*10
-6

976.56*10
-6

31.25*10
-3

1.00*10
0

32.00*10
0

1.02*10
3

 1 4 16 64 256 1024

No packing
Det-WFA

Fully homomorphic encryption: MAX

62.50*10
-3

250.00*10
-3

1.00*10
0

4.00*10
0

16.00*10
0

64.00*10
0

256.00*10
0

1.02*10
3

 1 4 16 64 256 1024

Gate Bootstrapping
Circuit Bootstrapping det-WFA

Figure 6.5: Leveled and fully homomorphic evaluation of the MAX function (2
inputs of d-bits each) - The y coordinate represents the running time in seconds (in
logscale), the x coordinate represents the number of bits in the input (in logscale).

114

6.4 Time comparison between di�erent techniques

Leveled homomorphic encryption: Multiplication

30.52*10
-6

976.56*10
-6

31.25*10
-3

1.00*10
0

32.00*10
0

1.02*10
3

32.77*10
3

1.05*10
6

33.55*10
6

1.07*10
9

 1 4 16 64 256 1024

No packing
Det-WFA

TBSR

Fully homomorphic encryption: Multiplication

31.25*10
-3

1.00*10
0

32.00*10
0

1.02*10
3

32.77*10
3

1.05*10
6

 1 4 16 64 256 1024

Gate Bootstrapping
Circuit Bootstrapping det-WFA

Circuit Bootstrapping TBSR

Figure 6.6: Leveled and fully homomorphic evaluation of the Multiplication (2
inputs of d-bits each) - The y coordinate represents the running time in seconds (in
logscale), the x coordinate represents the number of bits in the input (in logscale).

115

Chapter 6. Security estimates, practical results and implementation

• Circuit bootstrapping with TBSR: (computed by optimization program).

The graph representing the leveled evaluation of the multiplication revels that for
less than 2-bits input the best evaluation is performed without any optimization.
Starting from 2− 3 bits of input, the best technique is the evaluation via det-WFA,
while after 128 input bits, the TBSR counter is optimal. The graph representing the
fully homomorphic evaluation shows that up to 4-bit inputs the best technique is the
gate bootstrapping. Then, circuit bootstrapping combined with det-WFA becomes
optimal up to about 128 bit inputs, where again the circuit bootstrapping combined
with the TBSR techniques seems to be the best choice.

6.4.1 Comparison between TFHE and the other schemes

In previous section we shown how the di�erent techniques presented in the main
chapters of this manuscript perform when applied on di�erent use cases. The
results show that no one between the techniques proposed is always the best. The
performances do not only depend on the speci�c function to be evaluated, but also
on the number of inputs and outputs, as shown in many of the graphs presented.
The choice between leveled and fully homomorphic mode depends also on the
application, on the dataset used (dynamic or not), on the security assumptions,
etc. Many variables have to be taken into account.

Furthermore, TFHE is not the only library on homomorphic encryption proposed.
We often compare our results with FHEW [DM17], which is a predecessor of TFHE,
but a broader comparison should be done.
Between the open source implementations proposed, we have:

• HElib[HS17]: implements the optimized BGV [BGV12] scheme.

• SEAL [aMR17]: implements a variant of the FV [FV12] scheme.

• NFLlib [CEQ16]: dedicated to ideal lattice cryptography.

• cuHE [Dai16]: implements a variant of the LTV [LTV12] scheme.

• HEAAN [HEA17]: implements the scheme proposed in [CKKS17].

• Λ ◦ λ (Lol) [Lol17]: dedicated to ring-based lattice cryptography.

• PALISADE [PAL17]: dedicated to general lattice cryptography.

• And many other implementations.

In these implementations, di�erent techniques and optimization are proposed:
dedicated packing and batching techniques, bootstrapping, FFT and NTT6,

6Number Theoretic Transform.

116

6.4 Time comparison between di�erent techniques

multi-threading, multi-key, approximate number computations, etc.

A natural question at this point could be: which one of these schemes (including
TFHE) is the best?
Maybe the answer can be found by de�ning what is the meaning of �best�. Again
there is not an absolute best scheme or implementation for now. Every construction
has its pros and cons, and speci�c functionalities that are well suited for speci�c
applications.

This is still an open question for us, but we think that a good way to answer could
be to �x a large number of use cases and try to implement each one of them with
the di�erent constructions proposed. The result would not be a single winner, but
most probably a portfolio of good solutions.

117

Chapter 6. Security estimates, practical results and implementation

118

Conclusion

In this thesis we studied in detail the TFHE scheme, from both a theoretical and
a practical point of view. The reformalization of this GSW-based scheme helped us
simplify the comprehension of the construction and to better understand all the
links between di�erent plaintext spaces.

As a result, both the leveled and bootstrapped constructions where improved: we
proposed new packing techniques for the homomorphic evaluation of LUT, an eval-
uation via det-WFA, the TBSR homomorphic counter, and we improved the boot-
strapping in the case when it is evaluated after every homomorphic gate (gate boot-
strapping) or after the evaluation of a leveled circuit (circuit bootstrapping).
The techniques proposed can be used separately or mixed, depending on the
application, as shown in the examples. Some of the techniques presented have been
implemented in the TFHE library, available in open-source on GitHub.

We present three additional works in the appendices. The �rst one analyzes the
security of general homomorphic encryption schemes in a cloud implementation
scenario, by presenting safe error attacks and by suggesting some possible coun-
termeasures. The second one presents the �rst post-quantum e-voting encryption
scheme, as a real world application of FHE: the scheme is not already implemented
but we predicted the approximated execution timings, showing that a practical set
up could be possible. The third one concerns a di�erent solution to perform secure
private computations via MPC: o can be used to evaluate real-valued functions with
high numerical precision, which is interesting for classi�cation problems aiming to
detect rare events.

We would like to conclude this manuscript by summarizing the open problems, that
could be the starting point for future works.

Open problems

The �rst open problem we would like to solve is the implementation of the complete
TFHE scheme: in the o�cial release of the library, only the gate bootstrapping

119

Conclusion

mode is implemented and the circuit bootstrapping is still in the experimental
repository. But all the other features described in this manuscript are not already
implemented and tested.

TFHE is a valuable solution for FHE computations, but many other schemes
exist. There is no one best scheme for now, every one of them proposes di�erent
functionalities, that are better suited to some applications rather than others. An
example that is often cited is the homomorphic evaluation of the AES decryption,
which has been studied for its interest in trans-ciphering. For this evaluation, the
BGV-based schemes and the HElib library seem more e�cient than other imple-
mentations, thanks to the optimal vectorized operations [GHS12]. But recently,
it has been shown that stream-ciphers seems more adapted than block-ciphers
for trans-ciphering [CCF+16]. In this case, GSW-based schemes and in particular
TFHE, optimizing homomorphic gate operations, are more e�cient.

A more detailed comparison between di�erent schemes needs to be done on a larger
portfolio of functions. Furthermore, it could be interesting to improve every one
of these construction by adapting the optimization techniques proposed in other
schemes, or to construct new e�cient �bootstrappings� allowing to homomorphically
switch from a scheme to another. This requires a deep study of all the constructions.
Of course, a FHE scheme that does not need to be bootstrapped may be the
solution to many of the e�ciency problems of the schemes, since bootstrapping is
still the more costly part of the homomorphic evaluations. But this is a major open
problem that might stay open for a long time.

Once the implementation of TFHE will be more complete, it would be interesting
to test other real world applications and to �nally implement our e-voting scheme7,
described in Appendix B.

Finally, in preparation for a cloud use of homomorphic encryption constructions,
the ability of verifying the correctness of computations in a e�cient way seems
an important task that needs to be studied more deeply. We discuss this point in
Appendix A.
Also other secure solutions for private computations deserve attention. We started
investigating one of them, multi-party computation, in our work described in Ap-
pendix C. This seems to be a good starting point to better understand the large
scenario of solutions proposed in the literature.

7The scheme still needs an update of the security proofs and to include further security notions.
Only in this way, it could be taken into consideration for future medium-scale elections.

120

Appendices

121

Appendix A

Cloud security of homomorphic

encryption

In this chapter we analyze the security of homomorphic encryption schemes in gen-
eral (not only TFHE) when they are used in a cloud context. We start by describing
the attacks on generic HE schemes, then we analyze the attacks on bootstrappable
schemes.
As we already said in Chapter 1, nowadays we store more and more data on
the cloud: e-mails, photos, contacts, GPS information, etc. We upload all this
information by using secure protocols and we store it in cloud servers, inside
accounts protected by a password. But the cloud provider itself remains the
legitimate recipient, so he keeps an unrestricted access to this valuable information.
In this case, it is natural to consider an honest but curious model.

But if we start using homomorphic encryption to hide the data to the cloud itself,
we restrict this unlimited access and all the advantages the cloud service providers
gain from this. It is natural to imagine that some cloud providers will stop o�ering
their services for free, and some others may even switch to more powerful attacks,
that could include data tampering, in order to regain access to that information.
In order to capture the second scenario, we have to consider the cloud operative
systems untrusted and malicious.
Of course, as the services provided constitute a huge economical value, the cloud
will do his best to ensure that his attacks remain undetected: indeed, visible attacks
would break the client's trust, and would incite him to stop using the cloud services,
which is obviously not the goal. In this case , our security model identi�es the cloud
as a discreet and cautious adversary.
In this chapter, we (improperly) use the term cloud to denote also any possible
malicious actor that can access the data stored/processed, inject errors in order to
perform an attack and observe all the communications between the cloud server
and the clients.

123

Appendix A. Cloud security of homomorphic encryption

Our goal is to prove that the security of an homomorphic scheme cannot be assessed
at the primitive level. The broader construction must also be taken into account
in the security analysis. The point we want to stress is that, even if the primitives
at the base of homomorphic encryption schemes are secure, the whole construction
around presents several failures, exploitable by a malicious attacker.

Some security notions. When it comes to cryptology, several security notions
are proposed. In this chapter we take four of them into account:

• IND-CPA: �indistinguishability under chosen plaintext attack�. Also called
semantic security, is considered as the basic security requirement for a cryp-
tosystem. Brie�y, semantic security means that an adversary is not able to
distinguish encryptions of 0 from encryptions of 1.

• IND-CCA1: �indistinguishability under (non-adaptive) chosen ciphertext at-
tack�. The adversary can ask an oracle to decrypt polynomially many cipher-
texts of his choice, before the challenge ciphertext is proposed by the chal-
lenger. Even with such an advantage he should not be able to distinguish the
message encrypted in the challenge.

• IND-CCA2: �indistinguishability under adaptive chosen ciphertext attack�.
The adversary can ask an oracle to decrypt polynomially many ciphertexts
of his choice (except the challenge itself) also after the challenge ciphertext is
proposed. Even with such an advantage he should not be able to distinguish the
message encrypted in the challenge. IND-CCA2 security is one of the strongest
security levels.

• IND-CVA: �indistinguishability under (chosen) ciphertext veri�cation at-
tack�. It is generally considered as an intermediate security notion, stronger
than IND-CPA, but weaker than IND-CCA21. The adversary can ask an oracle
to verify the validity of polynomially many ciphertexts (except the challenge
itself). Even with such an advantage he should not be able to distinguish the
message encrypted in the challenge. There exist two �avours of the attack,
adaptive and non adaptive, as for the IND-CCA. CVA attacks are strictly
linked to reaction attacks, the adversary observes the reaction of the private
key owner when he decrypts a tempered ciphertext: this could provide the ad-
versary with some information on the secret key or message. IND-CVA security
requires that this situation does not happen.

Homomorphic primitives from the state of the art are proved semantically secure
by a direct reduction to an intractable problem. But as homomorphic encryption

1Figure 1 of [DDA13] summarizes the connections between the di�erent security notions.

124

schemes are malleable by construction, they cannot be IND-CCA2 secure: in this
case, choosing feature over security seems to be the only possible choice.
IND-CCA1 security is more delicate. In the FHE case, the IND-CCA1 security
is contradictory: the bootstrapping principle in fact wants the secret key to be
given encrypted as a public parameter, which implies a trivial (non-adaptive) chosen
ciphertext attack. For SHE primitives instead, papers such as [LMSV11], [ZPS12]
and [CT14] show that almost all the schemes proposed are vulnerable to CCA1
attacks, which all reveal the decryption key. The attack can be realized just by
following the steps of the decision-to-search reduction: this applies as instance to
the somewhat homomorphic primitives which are based on LWE or its ring variant,
as we already said in Section 6.1. The idea consists in making a guess for the �rst
bit of the secret key and randomizing the �rst coordinate of the sample. Then the
answer of the decision oracle about this re-randomized sample reveals the value of
the private key bit. By repeating this procedure, we can reveal the entire secret key.
Reciprocally, it appears that for other SHE schemes no CCA1 attacks are known.
An example is given in [LGM16b, LGM16a], where the GSW-based scheme
generates �one-time secret keys� every time the decryption algorithm needs to
be run. In [CRRV17], the authors construct three CCA1-secure FHE schemes by
using multy-key identity-based FHE schemes, indistinguishability obfuscation and
SNARKs.

At a primitive level, it seems that we are faced with an impossible choice between
security requirements or features (FHE, bootstrapping, worst-case assumption). To
make a choice, we need to see beyond the homomorphic primitive and consider a
broader view of the overall system. Namely, we are interested in �nding realistic
situations where the cloud would have access to some (possibly weak) decryption
oracle.
Imagine the scenario cloud-and-client, where the client has some homomorphically
encrypted data on the cloud servers and asks for some computations on these data.
If the parameters are well chosen and the cloud does computations as asked by
the client (without cheating), the decrypted result is correct. If instead an error
occurred during the homomorphic computations, the decrypted result is incorrect
with overwhelming probability. In this case, the client receiving an incorrect result
is going to ask the cloud to repeat the evaluation and send back the result again.
In such scenario, the client acts as an oracle verifying the correctness of the
computations, i.e. an oracle for a ciphertext veri�cation attack (CVA). In this case
the IND-CVA security is not achieved for homomorphic encryption, independently
on the scheme that has been chosen.

The idea of CVA security dates back to the �Reaction Attacks� of Hall, Goldberg and
Schneier [HGS99] in 1999. Instead of targeting the hard underlying problem, their
idea was to observe the reaction of the private key owner (the client in our scenario),

125

Appendix A. Cloud security of homomorphic encryption

when he decrypts a tampered ciphertext. Knowing whether it still decrypts into a
valid plaintext, can sometimes provide the attacker with some information on the
message or on the secret key. The attack by Bleichenbacher [Ble98] in 1998 against
the RSA-PKCS#1 uses similar principles. These notions have been later regrouped
and re-de�ned in 2009 by Hu, Sun and Jiang in [HSJ09] as Indistinguishability under
Ciphertext Veri�cation Attack (IND-CVA).
At a primitive level, IND-CVA is usually achieved by requiring a strong padding
condition on the message space, like the RSA-OAEP2. In the context of homo-
morphic encryption, IND-CVA does not seem to make sense at the primitive level,
especially when ciphertexts are full-domain, or if the message space is too small to
encode an intrinsic constraint (like the {0, 1} message space). However, this notion
should be extended at the system level, where many individually valid ciphertexts
are combined together to form some possibly meaningful information. In this case,
an attacker could replace a few ciphertexts with other valid ciphertexts, and see
if the overall information looks still meaningful to the recipient. As already said
in [LMSV11] and [ZPS11], this oracle exists in practice, whenever the client asks
the cloud for computations. If the client thinks that the data returned by the cloud
is incorrect, especially in an economical model where the client pays the cloud per
running times, he certainly asks the cloud for a free re-computation of the result,
otherwise he just accepts it. This natural behaviour can be viewed as the response
of a CVA oracle, and used as an instrument to retrieve sensitive information. As we
show in following sections, it leaks one bit of information per �query�.

Safe-Errors and Reaction. The attacks we present are strongly inspired by
side-channel attacks in the smart-card domain, but without the need for particular
equipment (lasers, probes, etc.). In the cloud scenario, they are simple software at-
tacks. Overall, we perform safe-error attacks [YJ00], whose principle is the following:
the malicious actor changes a few bits during a computation, and then, he checks if
this modi�cation triggers an error later in the process.
In the cloud setting, the semantic security of the black box primitive prevents the
attacker from directly obtaining a non-trivial information on the input. This is the
second main di�erence with the smart card domain, where the result can instead
be measured immediately after the attack. This is the very reason why in the cloud
domain, the attacker needs an observable reaction from the client. If no one is aware
of this attack, the model is quite realistic: for instance, if the attacker's modi�cation
impacts the response at a point that the decrypted text looks gibberish, the natural
reaction of the client is to notify the cloud and ask him to re-run the computation.
We also want to emphasize the contrast between the simplicity of these attacks,
which may be quali�ed as trivial (as they require almost no mathematical back-
ground at all), and the fact that they can be conducted in practice for any use-case
of the cloud until now. Furthermore, if heavy countermeasures may be deployed for

2Optimal Asymmetric Encryption Padding [BR94].

126

A.1 Safe-errors and reaction attacks in the cloud

somewhat homomorphic schemes, they seem impractical and useless for fully ho-
momorphic schemes, underlining an additional antagonism between e�ciency and
security.

A.1 Safe-errors and reaction attacks in the cloud

The parallelism between smart-cards circuits and homomorphic computations in a
cloud is easy to see: in both cases there are circuits operating on hidden data. For
instance, the most frequent purpose of a smart card is to compute digital signa-
tures, using a private key which should never be extracted, even by its legitimate
owner. Similarly, the client may provide the bitwise homomorphic encryption of a
private key to the cloud, and let the cloud homomorphically compute (encrypted)
signatures of encrypted data.

It has long been known that smart-cards are vulnerable to side-channel attacks.
Some of the attacks are passive, where an attacker gets information on the
computation by measuring the running time, the power consumption, some
electromagnetic �eld, or any other side channel information. For example, if the
computation of an RSA [RSA78] or (EC)DSA signature [Kra93, JMV01] uses a
naive square-and-multiply/double-and-add algorithm, the sequence of operations
strongly depends on the number of �ones� and on their positions in the secret
key. In smart-cards, these attacks are usually prevented by making the circuit
data-independent or oblivious, if possible even SIMD parallel. Other perturbations
may also be introduced, like adding other arbitrary computations that are not used
in the sequel.

In homomorphic computations, the above countermeasures are mandatory by
design: all circuits must be oblivious, since the semantic security of homomorphic
primitives prevents the cloud from getting any information on the data. In practice,
it means that the number of iterations of all for loops are publicly known in
advance, there is no while loop, no data-dependent jump, and the standard way
of evaluating an if-then-else block is to fully evaluate both possibilities, and in
the end, to pick the right result. It also means that simple power or running-time
analysis are irrelevant in the cloud, however, fault attacks are still meaningful.

In an active attack on smart cards, the attacker tampers the computation and ob-
serves the result in order to gain information on the hidden data. For smart cards,
the hardest part is to introduce the fault at a precise moment of the computation,
because this usually requires a dedicated physical device.
For this reason, and also the fact that most of these attacks require the card
pin code, the attacker is in general the legitimate owner of the card, who just
wants to retrieve the hidden key. Furthermore, such attacks have variable success

127

Appendix A. Cloud security of homomorphic encryption

probabilities, because some parts of a circuit are easier to overheat than others, and
all this must be taken into account in their analysis.

By contrast, the cloud provider has a direct and unlimited software access to the
whole circuit which is evaluated. He may tamper the result of any gate of his choice
with probability 1, at any time. The physical protection of the circuit is replaced by
the mathematical shield, which usually consists in saying that every bit is encrypted
with a semantically secure scheme. This indeed guarantees that, without an external
feedback, no attacker may conduct, on his own, any attack (active or passive) that
can reveal sensitive data.
However, some composition of schemes may grant the attacker a weak version of
a decryption oracle. For instance, the cloud provider can observe the reaction of a
person who owns the private key and who processes the result afterwards, and hope
that his behaviour reveals information on a part of the data.

A.1.1 Attacking the data

The idea of safe-error attacks is that during the execution of an algorithm, a fault is
injected in a precise point. For some secret values, this fault has no e�ect on the �nal
result, and for some other values, it changes the result completely. So, by observing
the correctness of the �nal result (or in our context the reaction of the legitimate
receiver), the attacker can retrieve the target secret value.
By using the techniques from smart-cards on the cloud, we can recreate a more
realistic scenario than those involving a universal decryption oracle. Suppose that
we want to evaluate a function ϕ on k ciphertexts c1, . . . , ck, encrypting k messages
m1, . . . ,mk ∈ {0, 1} respectively. If the evaluation is performed without any error,
the result is a ciphertext c encrypting ϕ(m1, . . . ,mk) (Figure A.1).

µ1

µ2

µk

c1

c2

ck

ϕhom c ϕ(m1,m2, . . . ,mk)

CLOUD

Figure A.1: Homomorphic computation of the function ϕ on the cloud.

But if an error is introduced, the �nal result could be wrong. For instance, suppose
the cloud wants to retrieve the value encrypted in ciphertext c1. He could just
replace this latter with a di�erent ciphertext c̃1 encrypting 0. Then he performs the

128

A.1 Safe-errors and reaction attacks in the cloud

rest of the computations correctly. The result is a faulted ciphertext c̃ encrypting
ϕ(0,m2, . . . ,mk) (Figure A.2).

µ1

µ2

µk

0c̃1

c2

ck

ϕhom c̃ ϕ(0,m2, . . . ,mk)

CLOUD

Figure A.2: Homomorphic computation of the function ϕ on the cloud with safe-
error attack.

If the decrypted results ϕ(m1,m2, . . . ,mk) and ϕ(0,m2, . . . ,mk) are di�erent, it
means that an error occurred, so m1 is di�erent from 0. Otherwise, the guess of the
cloud was correct. The cloud cannot verify this equality, because it can access only
semantically secure encrypted data.
It is here that the reaction of the client plays a crucial role. In our model, upon
reception of the ciphertext computed by the cloud, the client decrypts the message
and applies some likelihood test. Then, the cloud provider may observe two possible
reactions from the client: if the likelihood test failed, the client may directly com-
plain that the result is wrong, and ask for a re-computation. If the likelihood test
succeeds, the client simply accepts the result. In both cases, the cloud has received
the information he needed to understand if the safe-error was correct or not, and so
retrieve the value of the encrypted bit. By repeating the same procedure k times,
the cloud retrieves all the k bits.
As a toy example, we can think of a client asking the cloud to compute homomor-
phically some signatures. He stores on the cloud the encrypted signature secret key
and asks to sign some data. If a safe error attack is performed on the signature secret
key, the veri�cation of the signature (the �likelihood test�) detects immediately if an
error was introduced.

A.1.2 Attacking the algorithm

The spectrum of targets of safe-error attacks is wide. As well as an attack on data,
the attacker could target the algorithm itself. As instance, he could temper the
temporary variables used in the algorithm. We use the RSA square-and-multiply
always procedure (Algorithm 13) as a concrete example.
In the process of making an algorithm oblivious, all conditional structures like �if a
then B else C� are replaced by �evaluate B, evaluate C, and output aB+ (1−a)C�.

129

Appendix A. Cloud security of homomorphic encryption

Algorithm 13 RSA square-and-multiply always

Input: A message m, a RSA secret key d = (d0, . . . , dk−1), a RSA modulus N .
Output: The RSA signature md mod N
1: t← m
2: for i = k − 2 to 0 do
3: t0 ←− t2 mod N
4: t1 ←− t0 ·m mod N . A safe error could target this line
5: t←− tdi mod N
6: end for
7: return t

This strategy prevents timing attacks on smart cards, because the set of operations
that are executed do not depend anymore on a. However, it is a natural target for
safe-errors attacks. Indeed, if an attacker may tamper the execution of the block
B, and see if it has a consequence in the following. If it is so, it means that the
condition a was true.
In Algorithm 13, in order to homomorphically evaluate md mod N , each intermedi-
ate step computes a square t0 = t2 mod N and a multiply t1 = m ·t2 mod N , where t
is initially set equal to m. Then the algorithm chooses which value to select depend-
ing on the current key bit di. If an attacker tampers the multiplication at Line 4,
replacing the value of t1 with any other random (plaintext) data, this safe-error af-
fects the �nal result with almost certainty if and only if the current private-key bit
is equal to 1. Indeed, if the key bit was null, this tampered data would simply have
been discarded at Line 5. Once again, the attacker learns one key bit by observing
the reaction of the recipient, but this time he does target a portion of the algorithm
he is able to understand instead of the data.

A.2 Attacking the bootstrapping principle

In the previous section we showed how to attack a secret value stored in the cloud
and encrypted with a generic homomorphic encryption scheme: our target was not
the scheme itself. Instead, in this section we apply the attacks directly to the boot-
strapping principle to target the secret keys of the HE scheme, highlighting that
a safe-error and reaction attack is particularly e�cient in this case. We analyze
two use-cases of the bootstrapping mechanisms. The �rst one is used to proxy-re-
encrypt a message, encrypted with any scheme, into a bit-wise HE encryption of
the same message: this technique is often called trans-ciphering and it is commonly
proposed as an optimization in order to drastically reduce the communications from
the client to the cloud. The second notion is the original bootstrapping proposed by
Gentry, used in order to refresh noisy ciphertexts, and to turn a somewhat/leveled
homomorphic scheme into a fully homomorphic one.

130

A.2 Attacking the bootstrapping principle

A.2.1 Trans-ciphering

Homomorphic schemes are known to have a very high ciphertext-versus-plaintext
expansion rate. TFHE is one of the most compact schemes, and it uses about 2
KBytes of ciphertext (TLWE) to encrypt one bit of message (more details are given
in next chapter). With TRLWE packing (Section 4.1.2), we can reduce this overhead
to about 64 bits of ciphertext per bit of message.

The ciphertext expansion rate is particularly annoying when the client has to upload
his input data to the cloud over the network. A solution that has been proposed
in [NLV11] is to encrypt the data using a traditional symmetric algorithm like AES-
CBC, and to send it together with the bitwise-homomorphically encrypted AES key.
That way, the data is sent using an amortized 1-1 encryption ratio, which saves a
considerable amount of network bandwidth.
In order to perform homomorphic operations on the data, the cloud needs to convert
the AES ciphertext into an homomorphic ciphertext, and this is the goal of the trans-
ciphering phase: it locally re-encrypts each bit of the AES ciphertext by running
the AES decryption algorithm homomorphically. The homomorphic evaluation of
the AES circuit has already been intensively studied, and for example [GHS12]
takes a particular care optimizing its running time. Recent results from [CCF+16]
and [MJSC16], show that di�erent schemes, such as some stream ciphers, can be
more �FHE friendly� than AES for trans-ciphering.
This whole trans-ciphering construction has a huge drawback: the secret key of the
�rst scheme becomes a secret data encrypted with the secret key of the homomorphic
scheme. This allows to apply the attack presented in previous section, with the
di�erence that, targeting the secret key reveals much more than just the 128 AES
key bits. It allows the attacker to decrypt the whole input data. The main security
properties of symmetric ciphers guarantees that any modi�cation of a single key bit
of a secret key renders the whole data gibberish, and certainly triggers the expected
reaction from the client. In a practical attack scenario, if the input data is AES-
encrypted with a 128-bit AES key, the attacker may prefer to perform the attack
on �rst 80 key bits, which only triggers about 40 negative feedback from the client.
Then, the attacker may simply brute-force the remaining 48 bits o�-line and decrypt
all the client's data.

A.2.2 Bootstrapping

As we saw in Chapter 5, bootstrapping can be used to refresh noisy cipher-
texts, or even to homomorphically evaluate di�erent functions or change the mes-
sage/ciphertext space. The noise of the output ciphertext only depends on the (�xed)
noise of the bootstrapping key, and not on the noise of the input ciphertext, which
may reach the maximal level. Bootstrapping has been viewed as a way of bound-
ing the noise growth, or of refreshing the ciphertexts after each (or after some)

131

Appendix A. Cloud security of homomorphic encryption

elementary homomorphic operation.
In all cases, the algorithm that is homomorphically evaluated during a bootstrap-
ping procedure, or the refreshing procedure for schemes �without bootstrapping�,
is always equivalent to the decryption function. Thus recovering the bootstrapping
key via safe-error totally breaks the onewayness of all schemes based on circular
security. Schemes which do not rely on circular security but are still considered fully
homomorphic provide, instead, a long chain of distinct bootstrapping keys, where
each one is encrypted with the next one. In this case, the safe error attack needs
to be applied only on the last bootstrapping key of the chain: once it is recovered,
we can use it to decrypt the whole chain of keys. Again, this totally breaks the
onewayness.

A.3 Countermeasures

The attacks we pointed out in this chapter are very simple. Yet, they work even on
perfect black-box primitives, and they have catastrophic consequences on data pri-
vacy if nothing is done at the system level to prevent them. Furthermore, we worked
under the optimistic assumption that the requested computation had a unique solu-
tion, and that any error would be detected by the client's likelihood test. Of course,
the situation is much worse if the problem has multiple valid solutions, and each of
those induces di�erent visible reactions later in the process. This includes of course
any white-box use of the cloud, where the �nal result is decrypted and published
by the client. The cloud may hide some key-dependent ciphertexts inside the least
signi�cant bits of �oating point statistics over encrypted medical data, or in the
random bits of NTRU-like signatures it was asked to compute. These attacks are
even more dangerous than those we presented in the previous sections, because the
client may hardly detect the attack, and in the mean time, the cloud provider is left
with a universal decryption oracle.
In this section, we study some possible countermeasures/precautions to prevent these
simple attacks, and show that the client must be very strict concerning its trust
model towards the cloud.

Asymmetric versus symmetric encryption? One possible countermeasure we
may think of is to try to use symmetric schemes, instead of public key constructions.
Indeed, the direct attack on the hidden data requires the cloud to replace a cipher-
text with a valid ciphertext of 0 (or 1), so the goal of the countermeasure would
be to prevent him from being able to generate such ciphertext. Unfortunately, this
countermeasure does not really apply to homomorphic constructions. The large mal-
leability of these schemes allows them to evaluate potentially any function (including
the constant 0 or the constant 1 functions) and thus, to forge valid ciphertexts of 0
or 1 at will. For instance, if the homomorphic scheme includes the (homomorphic)
XOR or the (homomorphic) NAND gates, a valid ciphertext of 0 may be obtained by

132

A.3 Countermeasures

computing XOR(c, c) for any valid ciphertext c, and a valid ciphertext of 1 can be
obtained as NAND(c, NAND(c, c)).

Work on large blocks (no bitwise encryption)? A second proposal would be
to increase the length of the message space, so that homomorphic primitives operate
on larger blocks (for instance on 128-bits blocks) instead of just zeros and ones. In
this case, an attacker would only be able to tamper a whole block of data, and,
unless he guesses the right 128-bit value, it would always produce a reaction from
the client, which does not bring much information. But once again, this approach is
bound to fail for two reasons: it does not prevent the case where the attacker targets
a value which is not used in the sequel (as in the algorithm attack), which may be
replaced by any random (plaintext) value. And most importantly, once again, the
large malleability of homomorphic primitives allows the attacker to homomorphically
evaluate any function on a 128-bit block, including the function φi which takes a
block as input and sets its i-th bit to zero. The attacker can therefore replace a
ciphertext containing the block message m with the ciphertext containing φi(m)
and perform the attack. In this case, the reaction of the client reveals the value of
the i-th bit of m, as if the homomorphic primitive was just operating on binary
messages.

Do not reuse trans-ciphering keys? Concerning the trans-ciphering attack,
one could think that asking the client never to re-use the same AES key twice
is enough. In particular, the encrypted AES key cannot be set as permanent key
parameter, it must be generated and sent by the client over the network with every
new dataset.
Actually, the situation is even more complex than that. The actual requirement is
that the cloud must never be allowed to re-use the same data twice. For instance, if
the client used the AES trans-ciphering to transfer a whole database to the cloud,
this database must only be used to answer a single client's query. Indeed, for the sec-
ond query, the cloud may just silently re-run locally the trans-ciphering with another
safe-error, and get another key bit, and so on until the 128-th query. Obviously, in
most practical situations, the client is not able to prevent the cloud from re-using
the same data in many computations, so safe-errors should be considered as a huge
threat against the trans-ciphering strategy.

Add obfuscation? The nature of the attacks strongly suggest that the location
of important data bits must be hidden from the cloud, and the function must be
impossible to reverse-engineer or to understand. Achieving these goals is usually
called obfuscation. In order to prevent the attack on the data bits, an idea would be
to add some error correcting code. For instance, instead of computing f(x) where x
represents n bits of data, the algorithm would �rst compute y = g(x) where g is some
random error correcting code of large distance (between di�erent encoded �letters�)

133

Appendix A. Cloud security of homomorphic encryption

d > n, and the hidden data y has at least n + 2d bits. In order to successfully
invalidate the result, an attacker would then need to �ip at least d bits of data,
i.e. to �x 2d bits to arbitrary values. Of course, this is more a hint than an actual
workaround, for the following reasons:

• The code should not be perfect, and if possible non linear. Else, the reaction
attack of [HGS99] against the McEliece cryptosystem can be adapted. Basi-
cally, �x bits of data one by one to arbitrarily values until the client reacts. At
that point, if the code is perfect, there are exactly d+ 1 errors, so the last bit
set is wrong, and since there are already d errors among the others bits �xed,
each additional error induces a reaction from the client. So the classical safe
error can be conducted on the remaining data bits one by one.

• The composition between the homomorphic decoding y = g(x) and the func-
tion computation f(y) must be obfuscated to the cloud. Else, the cloud
provider may just run the code part homomorphically, and once it has the
bits of y, do the regular attack on them.

• For the same reason, the part of the circuit which computes f must be obfus-
cated, else the attack on the function may be directly performed.

• If g represents the encoding function of a non-linear random looking code, its
complexity has a serious impact on the size of the overall circuit, and therefore
on the parameter sizes of the homomorphic scheme. Besides, the fact that the
whole composition f ◦ g must be obfuscated worsens the situation.

• In trans-ciphering and bootstrappable constructions, using obfuscation would
considerably increase the parameters and the complexity.

At the time of writing, there exists no systematic obfuscation technique: IO-
obfuscation [BGI+01, GGH+13] is not yet practical, neither secure under any stan-
dard assumptions.
One of the purposes of homomorphic encryption was to provide a systematic way
of obfuscating a computation. But now, we see that in order to resist against sim-
ple safe-errors, the computation has to be obfuscated again with something more
powerful. Obviously, taking another homomorphic scheme as the larger obfuscation
seems to create a vicious circle. And if the computation is protected with another
ad hoc obfuscation, then what is the purpose of the �rst homomorphic scheme?

Do not forgive any mistake. It seems that the safest approach for the client
is to distrust the cloud immediately whenever he receives a ciphertext which does
not correspond to any realistic result. For instance, if the goal of the homomor-
phic scheme is to compute signatures and the received signature is invalid, or if
the data looks like a random binary sequence instead of a plaintext message. This

134

A.3 Countermeasures

also implies that the underlying homomorphic primitive must be error-free. Indeed,
many LWE-based homomorphic schemes which were recently proposed, including
[AP14], [DM15] and our TFHE construction, were able to drastically reduce the
parameter sizes by requesting that the homomorphic operations are randomized,
but with the counter-e�ect that even an honest homomorphic computation has a
small error-probability per gate in the circuit. Namely, the parameter set proposed
in [DM15], which allows to bootstrap the scheme in less than a second, has an error
probability of 2−32, which means that the result of an homomorphic computation
may be wrong even if no safe-error was introduced. The same is valid for TFHE:
we give detailed parameters in next chapter. Due to the nature of the attack we are
pointing out, allowing errors can be really devastating, since the client would not be
able to distinguish between an attack and an honest error due to the homomorphic
primitives.

Random computations. We could ask the cloud for random computations : for
instance if we need to compute k signatures every day, we may ask the cloud for 2k
signatures, where k are random computations. If the cloud performs its attack on day
1, and the client detects an error, he substitutes the random computations of day 2
with re-randomized ciphertexts from day 1, and send to the cloud 2k computations
as always. The cloud does not detect any strange reaction from the client, and
its attack fails. But this countermeasure is probably really costly, especially in the
economical model where the client pays per running time.

High entropy data. In the SHE or LHE settings, we should ensure that the data
�ow has high entropy at all times, and that changing one bit of a ciphertext is im-
possible, either because it exceeds the allowed noise bound (LHE), or because the
operation itself cannot be expressed as a valid homomorphic operation (SHE). This
implies that ciphertexts must encode multibit messages, and it may also require a
secret key mode, where the attacker cannot easily obtain valid ciphertexts of arbi-
trary plaintexts. This countermeasure may be the most promising countermeasure
for LHE schemes, but is not applicable to FHE because of its large malleability.

Veri�able computation. The last countermeasure is to require veri�able com-
putation. The most straightforward solution is to completely derandomize all cloud
operations, and to ask two independent cloud services to do the exact same com-
putations. If the two encrypted results are equal, then the client can hope that no
attack has been performed. This requires of course that the two cloud providers do
not collude. In a multi-user setting, this can be achieved by including incentive mea-
sures to the system, so that users are rewarded when they verify the computation
(like in the Bitcoin protocol). Again, this can be expensive in terms of costs and
network bandwidth for the client, unless the function is simple enough and its total
computation time is not too high (like in the e-voting protocol of [CGGI16b]).

135

Appendix A. Cloud security of homomorphic encryption

Another possibility is to force the cloud to produce a zero-knowledge proof of correct
computation, to prevent the attack on the algorithm, or a proof to demonstrate that
all the ciphertexts used in the computation were e�ectively the ones sent by the
client, to prevent the attack to the data. Recent works [CFW14], [CF13], [CFGN14],
[FMNP16], show how to practically construct homomorphic signatures, MACs and
authenticators for both leveled and fully homomorphic encryption schemes. Roughly
speaking, those tools allow a user (or multiple-users) to verify if the computations
done by the cloud are correct and if the set of data taken in input is actually
the good one. This indeed prevents safe errors. Intuitively, to verify the validity of a
(deterministic) polynomial function against random errors, it su�ces to check all the
computations modulo a �xed λ-bits number N , where λ is the security parameter.
We refer to the above citations for more details. Overall, the veri�cation process
has the same number of steps than the full homomorphic computation, but if λ is
smaller than the actual data-types of ciphertexts, the veri�cation of the checksum
may be faster that the entire computation3.
Therefore, all these techniques could be used in a larger scenario, where multiple
users ask for small computations, rapidly and constantly veri�ed, as it happens in
blockchain-type scenarios.
Another way to verify computations could be the use of Probabilistically Checkable
Proofs (PCP) [Cha01]. They seem similar to zero knowledge proofs, but they are
very di�erent in practice: the veri�er (i.e. the client) wants to be convinced that the
computations done by the prover (i.e the cloud) are correct, without checking every
passage, but just a few. The cloud should produce a polynomial size proof of good
computation and the client should verify just a constant number of passages to be
sure (with high probability) that the proof, and so the computations for which the
proof has been produced, are correct. The idea would be to create a compiler able
to transform the entire system of computations in an equivalent system, on which a
simple error propagates everywhere: this would imply that the veri�cation of a few
passages in the second system reveals the error with high probability. This is still
an open question.
Another possible trail to solve this problem could be to use zero knowledge
SNARGs (succinct non-interactive arguments) and SNARKs (succinct non-
interactive arguments of knowledge), to produce short and fastly veri�able
proofs [GGPR13, PHGR13]. These proofs are universal/Turing complete, so they
are promising in the FHE context. On the other hand, they seem to require a
trusted setup phase. Yet, the subject deserves a deeper study.

Homomorphic encryption is vulnerable against malicious attacks, in particular in
the cloud scenario: countermeasures exist but they are yet too costly. Before we

3This is just an intuition, but this does not apply to [DM15] or the TFHE schemes, which
operate on small 32-bit primitive types. Packing multiple 32-bit words together in these systems
does not correspond to low degree polynomial functions anymore.

136

A.3 Countermeasures

study the complexity of operations on a real-word cloud application, we should
understand if there exist scenarios in which the cloud is incentivized to perform
correct computations, or if he has to inevitably be considered an adversary.

137

Appendix A. Cloud security of homomorphic encryption

138

Appendix B

Application: a homomorphic LWE

based e-voting scheme

In this chapter we describe a homomorphic based electronic voting scheme, which
is one of the many applications of FHE. The scheme we describe was presented for
the �rst time at PQ Crypto in 2016 [CGGI16b] and it could be considered as the
starting point for TFHE. To our knowledge, the scheme is the �rst post-quantum
solution proposed for electronic voting. A new post quantum lattice-based e-voting
scheme has been recently proposed in [dPLNS17].

Our scheme is inspired by existing e-voting protocols, such us Helios [AdMP]
and its variant Belenios [GCG], and the main construction is based on LWE fully
homomorphic encryption. When we designed the scheme, we decided to use the
FHE construction by [DM15] with a few modi�cations. TFHE came later, with
the initial goal to be used for a practical realization of the e-voting scheme.
Nevertheless, during the process of developing TFHE we lost sight of the e-voting
and we �forgot� to verify if the improvements would work as predicted for this
application.

The goal of this chapter is to detail the main steps of the scheme, and to give an
intuition on a possible practical implementation of the scheme by using TFHE.

General overview of the scheme

Electronic voting can be seen as the electronic analogue of paper voting, which is
largely used in most of the countries for elections. To be really comparable with
paper voting, electronic voting has to satisfy many security properties: in particular
privacy, veri�ability and correctness can be considered the basics.
Roughly speaking, a scheme is

• Private: if it prevents anyone from retrieving the vote of a particular voter.

139

Appendix B. Application: a homomorphic LWE based e-voting scheme

• Veri�able: if it allows each voter to verify that his vote has been counted
(individual veri�ability) and ensures that the �nal count of votes corresponds
to the votes of legitimate voters (universal veri�ability).

• Correct : when the outcome of the election counts only the votes that have
been honestly generated.

Among other desirable properties for e-voting schemes, there are strong forms of
privacy such as receipt-freeness and coercion-resistance (a voter cannot prove that
he voted in a certain way), or ballot independence (a voter cannot produce a valid
vote related to the vote of someone else, while observing the interaction of this latter
with the election board).
De�ning security properties for electronic based systems has long been debated
and the design of secure e-voting protocols achieving all these properties happens
to be more intricate than for traditional paper-based systems. Many interesting
proposals have appeared in the last years, but their security still relies on classical
assumptions, which means that these proposed schemes could all be compromised if
e�cient quantum computers arise. To propose a quantum resistant e-voting scheme
could be a good approach to comfort people in using e-voting protocols.
In order to reach this aim, we built a post quantum secure e-voting scheme, by using
only post quantum secure building blocks, such as unforgeable lattice-based signa-
tures, LWE-based homomorphic encryption and trapdoors for lattices. Our scheme
is simple and transparent since it relies on homomorphic operations: we perform on
the ballots (almost) the same operations we would have performed on the clear votes.

The scheme is strongly inspired by existing e-voting protocols, in particular He-
lios [AdMP], which has already been used for medium-scale elections, and its variant
Belenios [GCG]. However, our scheme di�ers in two principal ways.
The underlying primitive is di�erent: Helios is a remote e-voting protocol based
on the additive property of ElGamal (which is broken by Shor's quantum algo-
rithm [Sho97]). In this variant of the ElGamal scheme, the messages are encrypted
as exponents instead of as multiplicative factors. This means that the multiplication
of two ciphertexts, encrypted with the same key, produces an encryption of the sum
of the messages, instead of their product.
Since the additive homomorphism lacks some expressiveness, each voter must ensure
that the plaintext encrypted in their ballot has a speci�c shape, suitable for homo-
morphic additions. The vote is expressed as a sequence containing as many elements
as the candidates of the election: one point is given to the chosen candidate and
0 points are given to the others. Of course, all the points are encrypted, but the
voter must prove that the vote is constructed in this way. Proving such property
without revealing any information on the content of the vote is usually achieved
using zero-knowledge proofs.
In our protocol, the fully homomorphic encryption allows to e�ciently transform

140

full-domain ciphertexts into such ciphertexts with speci�c semantic. This e�ectively
removes the need of a zero-knowledge proof.

In Helios, another zero-knowledge proof is used at the end of the protocol: the
trustees, i.e. the authorities charged with the decryption of the �nal result, have to
prove that they decrypted correctly without revealing their secret. Once again, in
our protocol we replaced the zero-knowledge proof with a di�erent technique, we
call publicly veri�able ciphertext trapdoor. This latter is produced using techniques
borrowed from trapdoor-based lattice signatures, GPV [GPV08], or [MP12], based
on Ajtai's SIS problem.

In order to prevent the bulletin board (the entity charged of casting and processing
the ballots) from stu�ng itself the ballots, we add a further authority in charge
of providing each user with a private and public credential which allows him to
sign his vote. This solution was already used in the variant of Helios proposed
in [CGGI14].

Cortier and Smyth [CS11, Smy12] show that homomorphic based e-voting protocols,
and in particular Helios, could be vulnerable to replay attacks, allowing a user to
cast a vote related to a previously cast ballot. This type of attacks could possibly
incur a bias on the vote of other users and break privacy. Although this attack has
a small impact in practice, the model for privacy should capture such attacks. Un-
til now, this attack is prevented by removing ballots which contains a ciphertext
that does already appear in a previously cast ballot. This operation is called ci-
pherext weeding. This strategy would not work with fully homomorphic schemes, as
bootstrapping operations would allow an attacker to re-randomize duplicated ballots
beyond anything one can detect.
In order to prevent these attacks, we use the one-wayness of the bootstrapping to
create some �plaintext-awareness� auxiliary information. This auxiliary information
can be seen as another encryption of the same ballot, it does not leak information
on the plaintext vote and its only purpose is to guarantee that the ballot has not
been copied or crafted from other ballots in the bulletin board.
The voter encrypts this auxiliary information and sends it with his ballot: the infor-
mation remains encrypted in the bulletin board until the end of the voting phase and
at this point, for the sake of transparency, it could be safely revealed to everyone.
In practice, we model this temporarily private channel by giving a public key to the
bulletin board, and letting him reveal the private key at the end of the voting phase.

Finally, in order to guarantee privacy even when some of the authorities keys are
corrupted, we show that our encryption scheme can be distributed among t trustees.
Instead of using a threshold decryption based on Shamir's secret sharing, we rely on
a simple concatenated LWE scheme. Each of the trustees carries its own decryption

141

Appendix B. Application: a homomorphic LWE based e-voting scheme

part, and any attempt to cheat is publicly detected.
On one hand, we lose the optional ability to reconstruct the result if some trustees
attempt a denial of service: this can be prevented anyway by taking the appropriate
legal measures. On the other hand, once the public key has been set, we detect
any attempt to cheat even if all the trustees collude. The privacy of the votes is
preserved until at least one trustee is honest. Thus, our protocol can be instantiated
with only two trustees which operate independently. In comparison, at least three
trustees are needed for Shamir's interpolation, and if they all collude, they could
produce a valid proof for a false result.

We use to (informally) call our e-voting scheme sPQlios, for Secure Post Quantum
scheme inspired by heLIOS. As TFHE was made after the e-voting scheme and we
never made the name o�cial, we decided to make it appear somewhere: our FFT
implementation was named after that.

Correctness and Security

The security of our scheme is based on classical SIS/LWE assumptions, which are
asymptotically as hard as worst-case lattice problems and we rely on the random
oracle heuristic.
Our e-voting scheme satis�es the basic security properties of privacy, veri�ability
and correctness.

• Privacy - For the privacy, we use the strongest game-based ballot privacy
recently introduced by [BCG+15, De�nition 7]. In the privacy de�nition we
simulate a game where two bulletin boards are maintained by the challenger.
The adversary has the power to corrupt a subset of trustees, vote for a candi-
date of his choice and cast ballots in only one of the two bulletin boards. At the
end of the voting procedure, the adversary should not be able to distinguish
the two bulletin boards.

• Veri�ability - For veri�ability, we use the de�nition proposed in [JCJ10]. We
say that the voting protocol is veri�able if it ensures that the tally veri�cation
algorithm does not accept two di�erent results for the same view of the public
bulletin board. In the security model for veri�ability, we suppose that the
adversary is able to corrupt all users but not the authority A1.

• Correctness - For the correctness, we use the de�nition proposed in [JCJ10].
If the users follow the protocol, an e-voting scheme is correct when the tally
leads to the result of the election on the submitted votes. The correctness is
proved in the case where the bulletin board is honest, which means that he is
not allowed to stu� or suppress valid ballots cast by honest users.

142

B.1 E-voting scheme

For more details on the proper security de�nitions and for the proofs we refer to our
paper [CGGI16b]. The improvements regarding stronger security proofs in the case
of malicious bulletin board and/or corrupted registration authority are still open
problems. We would also like to provide a stronger privacy proof without modeling
the randomized bootstrapping function as a random oracle.

Bootstrapping as a random oracle In the rest of the chapter we make the
hypothesis that the output of the bootstrapping function is indistinguishable from a
fresh LWE sample. The bootstrapping seems to behave like a good collision-resistant
one-way function, especially if we re-randomize the input sample by adding a random
combination of the public key. However, for veri�ability purposes, one may also wish
to control the randomness to reproduce some computations. To simplify the analysis,
we will therefore model bootstrapping as a random oracle.

B.1 E-voting scheme

E-voting schemes can be di�erent depending on the way the result is computed,
on the number of votes we have to express, on the type of answer to the vote, etc.
Our scheme is basically a single pass e-voting scheme, but it could be adapted for
di�erent purposes.
In a single pass e-voting scheme, each user publishes only one message to cast his
vote in the bulletin board. A voting scheme is speci�ed by a family of result functions
denoted as ρ : (I ×V)∗ → R where V is the set of all possible votes, I is the set of
voters' identi�ers, R speci�es the space of possible results. A voting scheme is also
associated to a re-vote policy. In our case, we assume that the last vote is taken into
account.
The entities implied in the voting procedures, apart from the voters/users, are:

• A1: the authority that handles the registration of users and updates the public
list of legitimate voters.

• BB: the bulletin board, that checks the well-formedness of received ballots
before they are cast. In our model, we assume that BB uses a secret key to
perform a part of this task but the secret could be revealed after the voting
phase. In the following, we improperly use the notation BB to indicate both
the bulletin board manager and the bulletin board itself.

• T : a set of trustees in charge of setting up their own decryption keys, and
computing the �nal tally function.

In this chapter we denote as ` the number of candidates, L an upper bound on the
number of voters and t the number of trustees. We denote as LU a public list of
users set at empty at the beginning.

143

Appendix B. Application: a homomorphic LWE based e-voting scheme

To simplify the description, we assume an authenticated private channel be-
tween the trustees. We suppose we are given an unforgeable signature scheme
we denote S = (KeyGenS, Sign,VerifyS) and a non-malleable encryption scheme
E = (KeyGenEBB,EncBB,DecBB). We suppose that both, the signature scheme and
the non malleable encryption scheme are quantum resistant.

The e-voting procedure is divided in three main parts:

1. The setup phase: the parameters and keys are set and the voters register after
the authority A1:

2. The voting phase: the voters product and send the ballots to the bulletin
board. This latter processes the ballots and computes (homomorphically) the
encrypted �nal result.

3. The tallying phase: the trustees decrypt the �nal result and produce the pub-
licly veri�able ciphertext trapdoors. Thus, everyone can verify the result, even
afterwards.

All these phases make use of some algorithms that could be de�ned as follows:

• (sk = (sk1, . . . , skt), params)← Setup(1λ, t, `, L): Each trustee chooses its secret
key ski and publishes a public information pki and proves that it knows the
corresponding secret with respect to the published public key. The bulletin
board runs (pkBB, skBB) ← KeyGenEBB(1λ), it publishes pkBB and keeps skBB
private. This step implicitly de�nes the public pk of the e-voting scheme that
includes pkBB. The parameters params includes the public key pk, the numbers
t, `, L, the list LU and the set of valid votes V. All these parameters are taken
as input in all the following algorithms.

• (usk, upk) ← Register(1λ, id): Takes in input a security parameter and a user
identity and provides the secret part of the user credential usk and its public
part upk. It updates the public list LU with upk.

• b ← Vote(pk, usk, upk, v): It takes as input a secret credential and public
credential that possibly includes id and a vote v ∈ V. It outputs a ballot
b = (aux, upk, c, num, σ) which consists in a content message that includes an
auxiliary information aux encrypted using the key pkBB, the public key upk, an
encryption c of the vote v, a version number num, used for the re-vote policy,
and a signature of this content message under the secret usk.

• ProcessBB(BB, b, skBB): As long as the bulletin board is open, when the bul-
letin board manager receives a ballot b, he parses it as (aux, upk, c, num, σ),
he veri�es that upk ∈ LU and uses upk to verify the signature of the ballot.
Then he decrypts aux using skBB, he performs a validity check on b and upk

144

B.2 More homomorphic building blocks

and �nally veri�es the re-vote policy with the version number. If b passes all
these checks, it is added in BB, otherwise BB remains unchanged.

• (Π1, . . . ,Πt)← Tally(BB, sk1, . . . , skt): Once the voting phase is closed and the
public bulletin board is published together with skBB, each trustee T ∈ T takes
as input the public bulletin board BB, and its own secret key to produce a
partial proof Πi, which is publicly disclosed.

• VerifyTally(BB, (Π1, . . . ,Πt)): (public) takes as input t partial proofs associated
to a given bulletin board BB and veri�es that each individual proof Πi is
correct, and uses all of them to decrypt. It outputs a �nal result r and ⊥ in
case of failure.

B.2 More homomorphic building blocks

In order to construct the e-voting scheme, we describe two additional building blocks:
the publicly veri�able ciphertext trapdoors and the concatenated encryption. Both
techniques are used by the trustees during the tallying phase.

B.2.1 Publicly veri�able decryption for LWE

In previous chapters, all the homomorphic constructions we described were pre-
sented in their symmetric version. In e-voting we need the public key version of the
cryptosystem. In fact, the voters need the homomorphic public key generated by the
trustees in order to encrypt their ballots.
In homomorphic encryption schemes, one usually publishes a polynomial num-
ber m = Ω(n log(1/α)) of random TLWE samples of the message 0 with
standard deviation parameter α. The public key can be written as a matrix
pk = [M |y] ∈ Tm×n × Tm×1 where y = MKT + err, where K is the TLWE secret
key. The public encryption of a message µ ∈ T can then be achieved by chosing a
random subset (of rows) of the public key, and adding them to a trivial ciphertext
of µ, as shown in Figure B.1. We call this operation TLWEPub

pk(µ).

In the protocol we present, this allows a voter to encrypt his vote. Then the BB
can publicly use the bootstrapping theorem to homomorphically evaluate whatever
circuits produces the (encrypted) �nal result. And in the end, some trustee must
decrypt this result using the secret key. If decrypting a TLWE ciphertext on a discrete
message space is easy, proving to everyone that the decryption is correct without
revealing anything on the TLWE secret key requires some more work.
To do so, we adopt a strategy which is borrowed from lattice-based signatures like
GPV [GPV08]. To allow a public decryption of c ∈ Tn+1, we reveal a small integer
combination (x1, . . . , xm) of the public key pk which could have been used to encrypt

145

Appendix B. Application: a homomorphic LWE based e-voting scheme

a1 a2 a3 am...pk

0 + + + = a...

Figure B.1: TLWE asymmetric encryption - We use the same notations as the
�gures presented in Chapter 3: the public key elements are encryptions of 0 (bottom
of the torus). The homomorphic addition between a trivial ciphertext of the message
and a random subset of elements of the public key produces a (non-trivial) encryption
of the message.

c. We call this combination publicly veri�able ciphertext trapdoor, and we abbreviate
it as PVCT.

De�nition B.2.1 (Publicly Veri�able Ciphertext Trapdoor (PVCT)). Let K be
a TLWE secret key and pk = [M |y] ∈ Tm×(n+1) be the corresponding public key.
Let c = (a, b) be a valid TLWE sample with packing radius d. We say that x =

(x1, . . . , xm) ∈ Zm is a PVCT of c if ‖x‖ ≤ β, with β =
√

d2−‖Err(c)‖2∞
2πσ2 , and if

x ·M = a in Tn.

Anyone who knows the public key can verify the correctness of the ciphertext
trapdoor. Furthermore, since the di�erence c − x · pk is a trivial ciphertext (0, ϕ)
of a phase ϕ corresponding to the message µ, this reveals the message at the same
time. Figure B.2 summarizes the idea behind PVCT.

Of course, �nding a small combination of random group elements which is close to
some target is related to the subset sum or the SIS family of problems, which are
hard in average. Luckily, the framework proposed in [MP12] introduces an e�cient
trapdoor solution. We summarize their ideas in the following de�nitions: De�ni-
tion B.2.2 is adapted from [MP12, De�nition 5.2] and De�nition B.2.1 is adapted
from [MP12, Theorem 5.1].

De�nition B.2.2 (Master Trapdoor). Let K be a TLWE secret key and let α ∈ R+.
A Gadget G ∈ Tm′×n is some publicly known superincreasing generating family of
Tn, such that any element a ∈ Tn can be approximatively decomposed as a small
(or binary) linear combination of G. Let A be a uniformly distributed family in
T(m−m′)×n, and let R be a m′ × (m −m′) integer matrix with (small) SubGaussian

entries. We de�ne the matrix M =

[
A
A′

]
∈ Tm×n where A′ = G − R · A. We call

146

B.2 More homomorphic building blocks

a1 a2 a3 am...pk

a −x1· −x2· −xm· = 0−x3· ...

same message (small combination of pk)

PVCT

Figure B.2: PVCT - A PVCT is a small combination of the public key pk that
could have been used to encrypt the message. By substracting this combination to
the ciphertext, we obtain a trivial ciphertext of the message.

R a master trapdoor, and its corresponding public key is pk ∈ Tm×(n+1), whose i-th
row is pki = (Mi|Mi · sk + ei) for some Gaussian noise ei of standard deviation α.
The master trapdoor veri�es the condition G = [R|Idm′] · M and the parameters
m,m′,m−m′ = O(log2(#〈G〉)), where we improperly denote with 〈G〉 the elements
of Tn whose decomposition with respect to G is exact.

Theorem B.2.1 (Trapdoor). Let K be a TLWE secret key and let α ∈ R+ a standard
deviation. Let c ∈ Tn+1 be a TLWE sample on a message space of packing radius
> 2d, R a master trapdoor of standard deviation γ and pk an associated public
key with noise < d/γ log(#〈G〉)1.5. Given c and R, one may e�ciently compute a
ciphertext trapdoor x for c of norm O(β log(#〈G〉)1.5). This trapdoor can decrypt c,
as in De�nition B.2.1. Furthermore, the distribution of the ciphertext trapdoors of
c is statistically close to some discrete Gaussian distribution on Zm, of parameter
O(β log(#〈G〉)0.5), and thus, does not reveal any information about R.

Ciphertext trapdoors are trivially vulnerable to chosen ciphertext attacks (CCA), as
they correspond to a decryption oracle, so they should only be invoked on the output
of some good hash function, or some random oracle. This is the case in our scheme,
where every PVCT is produced on an output of the bootstrapping algorithm, which
we model as a random oracle.

B.2.2 Concatenated TLWE with distributed decryption

To prevent a single authority from decrypting individual ballots and to guaranty
privacy in the long term, even if all but one trustee leaks its private key, we need to
split the TLWE secret key among multiple trustees. Instead of adopting a threshold

147

Appendix B. Application: a homomorphic LWE based e-voting scheme

decryption solution, like Shamir's secret sharing, we decided to use a simple concate-
nation of TLWE systems where all the trustees must do their part of the decryption,
and any cheater is publicly detected.
This requirement seems su�cient for an e-voting scheme. On one hand we lose
the ability to reconstruct the �nal result if not all the trustees collaborate in
the decryption process: this problem could be solved in practice by adopting
appropriate legal measures. On the other hand, we are able to guarantee privacy
until at least one of the trustees is honest, which implies that the scheme is secure
even with only two trustees.

Let K1, . . . ,Kt be t di�erent λ-bit secure TLWE secret keys, and pk1, . . . , pkt be
corresponding public keys such that pki = [Mi|yi] ∈ Tm×(n+1) be the corresponding
public keys with associated master trapdoors Ri for all i ∈ J1, tK.
We call concatenated TLWE the instance whose private key is s = (s1| . . . |st), and
public key is

pk =

M1 0 0 y1

0
. . . 0

...
0 0 Mt yt

 . (B.1)

To decrypt a (concatenated) TLWE ciphertext (with publicly veri�able decryption)
c = (a1| . . . |at, b) ∈ Tt×n × T, each of the t trustees independently uses his
master trapdoor Ri to provide a ciphertext trapdoor Πi of (ai, 0), and like in
the previous section, the concatenated ciphertext trapdoor Π = (Π1| · · · |Πt) is a
ciphertext-trapdoor for c.

Observe that, even if all trustees leak their private keys except one of them (we take
the �rst trustee for simplicity), then decrypting c rewrites in decrypting the TLWE
ciphertext (a1, b

′) where b′ = b−∑t
i=2 ai ·Ki. This is by de�nition still λ-bit secure.

In other words, even in case of collusions between the trustees, the whole scheme
remains secure as long as one trustee is honest.

B.3 Detailed Description of our E-voting Protocol

We now describe in detail the three phases of the vote: setup, voting and tallying.
For every phase, we describe in detail all the di�erent steps, when there is an honest
execution of the procedure.
We conclude this section, and also the chapter, by making a simple estimate of the
execution costs of this e-voting scheme by using TFHE. The estimates are done
only by using the gate bootstrapping. Further improvements could be obtained by
applying the leveled techniques and the circuit bootstrapping.
The question deserves a more in-depth study, we left as a future work.

148

B.3 Detailed Description of our E-voting Protocol

B.3.1 Setup phase

The setup phase is dedicated to the parameter setting and voter registration.

Key generation. Fixed a security parameter λ, the bulletin board manager
generates a pair of keys (pkBB, skBB) = KeyGenEBB(1λ) and publishes pkBB.

The trustees setup the concatenated TLWE scheme presented in previous section:
each trustee generates its own separate TLWE secret key Ki ∈ Bn, its own master
trapdoor Ri, and a corresponding public key pki ∈ Tm×(n+1).
Thus, the secret key ski of each trustee consists in Ri and Ki. Without revealing
any information on Ki, they must provide a proof that the public key pki is indeed
composed of TLWE samples of 0 encrypted with the corresponding secret. This is in
fact a requirement for the correctness of the decryption with ciphertext trapdoors.
To do so, we think that the trustees may for instance use NIZK proofs: this passage
deserves a deeper study.
Once the existence of Ki is established, the trustees do not necessarily need to prove
that they know the secrets Ki or Ri: the simple fact that they can output valid
ciphertext trapdoors proves it anyways, by standard LWE-to-SIS or decision-to-
search reduction arguments.
The main public key pk is the concatenated key de�ned in Equation (B.1).

To perform homomorphic operations e�ciently, the trustees de�ne two other TLWE
secret keys, K(f) (frontend keys) and K(m) (middle keys), and their corresponding
public key pk(f) and pk(m). The frontend keys are used by the voters to encrypt their
ballots in the �rst place. Then the ballots are bootstrapped to produce an encryption
of the same vote under the middle key. The initial (frontend) ciphertext is then
encrypted with the BB public key to became the auxiliary information. These keys
may still use a concatenated scheme, although this time, they don't need a master
trapdoor for that. The middle key is used all along the BB computations, until the
�nal bootstrapping performed on each ballot, before computing the �nal sum of all
the votes. The key used in this step is the one using trapdoor material.
Finally, the trustees provide three bootstrapping keys (and eventual key-switching
keys), that we note BK1 := BKK(f)→K(m) , BK2 := BKK(m)→K(m) , and BK3 := BKK(m)→K.
Since a bootstrapping key essentially consists in a public TLWE encryption of each
individual bit of the private key, each trustee can independently provide their part
of the bootstrapping keys.
The �rst two keys can be built by using the same parameter set described for the
gate bootstrapping. For the third bootstrapping key, we have two options: the �rst
one consists in using again the same parameter set as in the gate bootstrapping and
evaluate the �nal sum between ballots as a huge addition circuit, gate by gate. The
second option, which is the one originally proposed in our paper, consists in using a

149

Appendix B. Application: a homomorphic LWE based e-voting scheme

larger bootstrapping key in order to have an output message space with low noise
amplitude, and then perform the �nal sum of ballots as a simple addition.
In the last paragraph of this section we make estimates on the execution timings for
both solutions.

Voter registration. For every voter that wants to register, the authority A1

veri�es the voter identity id and generates the signature keys (upkid, uskid) ←
KeyGenS(1λ). Then A1 adds upkid in LU , the public list of users, and outputs
(upkid, uskid).

B.3.2 Voting phase

In our scheme, we suppose that the number of candidates ` = 2k is a power of two.
If it is not the case, we can always add null candidates. Then, if we choose a random
value for the vote, no candidate will be favorite over the others. A valid vote v is
thus assimilated to an integer between 0 and `− 1.

The ballot. By running Vote(pk, usk, upk, v), each user computes the binary de-
composition (v0, . . . , vk−1) ∈ {0, 1}k such that v =

∑k−1
j=0 vj2

j. Let v̂j denote 1
2
vj ∈ T,

each user encrypts each bit as c(f)
j = TLWEPub

pk(f)(v̂j) with noise amplitude < 1
4
. He

then bootstraps every c
(f)
j by using BK1 and obtains corresponding bootstrapped

ciphertext c(m)
j .

The auxiliary information is computed as aux = EncBB(pkBB, (c
(f)
0 , . . . , c

(f)
k−1)|upk).

The �nal ballot is b = (content, σ), where content = (aux, upk, (c
(m)
0 , . . . , c

(m)
k−1), num),

σ = Sign(usk, content) and where num is the version number of the ballot for the
revote policy1.

Processing a ballot in BB

Once the voter sends the ballot to the bulletin board, this one does the validity
checks and processes it before summing it with the other ballots to obtain the �nal
encrypted result.

Validity checks on a ballot. Upon reception of a ballot b, the bulletin board
parses it as (content, σ), with content = (aux, upk, (c

(m)
0 , . . . , c

(m)
k−1), num). He does:

• Verify that upk ∈ LU ;

• Verify the signature σ;

1The revote policy consists in accepting the last vote sent for upk: BB accepts to overwrite a
ballot for upk if and only if the new version number is strictly larger than the previous one.

150

B.3 Detailed Description of our E-voting Protocol

• Compute (c
(f)
0 , . . . , c

(f)
k−1)|upk′ = DecBB(skBB, aux);

• Verify that each c
(f)
j ∈ Tn+1;

• Verify that each c
(m)
j ∈ Tn+1;

• Check whether upk′ = upk;

• Check that c
(m)
j is the output of the bootstrapping with key BK1 taking in

input c(f)
j , for all j = 0, . . . , k − 1;

• Checks the revote policy with the version number num.

If all the validity checks pass, the bulletin board adds the ballot Observe that, unlike
classical e-voting protocols, no semantic check or zero-knowledge proof is needed at
this step, since all binary message are valid choices.

BB homomorphic operations. BB applies a sequence of public homomorphic
operations on the encrypted vote (c

(m)
0 , . . . , c

(m)
k−1). These homomorphic operations

do not require the presence of the voter, and can therefore be performed o�ine by
the cloud. To simplify, we just describe what happens on plaintexts.

1. Pre-bootstrapping A pre-bootstrapping by using BK2 is applied on each c
(m)
j to

cancel its uncontrolled input noise and reduce it to 1
16
, and also to re-express its

content on the {0, 1
4
} message space, which is suitable for Boolean homomorphic

operations.

2. Homomorphic binary expansion In order to compute the sum of the votes (ho-
momorphically), BB transforms the vector v̂ = 1

4
v = 1

4
(v0, . . . , vk−1) ∈ {0, 1

4
}k

into its characteristic vector ŵ = 1
4
(w0, . . . , w`−1) = (0, . . . , 0, 1

4
, 0, . . . , 0) of length

`, the number of the candidates (or choices for the vote), with a 1
4
at position

v =
∑k−1

i=0 vi2
i. This transformation is easy to compute: the value of every wh, for

h = 0, . . . , ` − 1, depends on all the bits of v. For every element h having binary
decomposition h =

∑k−1
i=0 hi2

i, wh corresponds to this boolean term:

wh(v) =

∧

i∈[0,k−1]
hi=0

vi

 ∧

∧

i∈[0,k−1]
hi=1

vi

The formula seems complicated, but it is just a conjunction of k variables vi or their
negation (k = log2 ` is in general smaller than 5 in typical elections).
These conjunctions can be easily evaluated on ciphertexts using the bootstrapped
HomNOT and HomAND gates, described in Chapter 5. The total number of boot-
strapped homomorphic gates is ` · k.

151

Appendix B. Application: a homomorphic LWE based e-voting scheme

3. Final bootstrapping. BB uses the main bootstrapping key BK3 to convert these `
ciphertexts into a new ciphertext of (0, . . . , 0, 1

L
, 0, . . . , 0) with noise O(L−3/2), where

L is an upper bound on the number of voters. The choice of parameters have to be
done considering this quantity. The bootstrapping at level 2 used for the circuit
bootstrapping, and implemented in the experimental repository of TFHE could be
adapted for this purpose.

4. Homomorphic addition. At the end of the voting phase, BB sums (homomorphi-
cally) all ciphertexts, which yields to the �nal TLWE ciphertexts (C0, . . . , C`−1) of
(n0

L
, ..., n`−1

L
), with noise O(L−1). No bootstrapping is needed for this step, it just

uses the standard addition on ciphertexts.

A di�erent solution consists in de�ning BK3 with the same parameters as the gate
bootstrapping: the homomorphic addition corresponds to the evaluation of a circuit
composed by homomorphic bootstrapped gates.

B.3.3 Tallying phase

Denote as (C0, . . . , C`−1) the �nal ciphertext processed by BB. Each TLWE sample
Cj encodes the message nj

L
with noise amplitude O(1/L), where nj is the number of

votes for candidate j.

Tally. For each Cj, the trustees independently perform the distributed decryption
described in section B.2.2, and publish a ciphertext trapdoor Πi,j ∈ Zm (for i =
1, . . . , t and j = 0, . . . , `− 1) as in de�nition B.2.1.

Verify tally. Given the main public key pk, anyone is able to check the va-
lidity of the PVCTs. If a trapdoor Πi,j is invalid, it publicly proves that the
i-th trustee is not honest and in this case VerifyTally returns ⊥. If all the trap-
doors are valid, anyone can use (Π1,j, . . . ,Πt,j) to decrypt Cj, and thus, recover
nj for all j = 0, . . . , ` − 1, which gives the number of votes for the candidate j.
This gives the result of the election. And VerifyTally returns the result (n0, . . . , n`−1).

The entire procedure is summarized in Figure B.3.

B.4 Practical estimates

The scheme has never been implemented, but we can give an approximate prediction
of the execution timings of our e-voting procedure by using the TFHE library. Real
timings and more precise parameters deserve a more in-depth study, we left as a
future work.

152

B.4 Practical estimates

1
2v1

eg: (1
2 ,

1
2 , 0)

noise: 1
4

[...]

Π1,0, . . . ,Πt,`−1(from trustees)

(n0

L , n1

L , . . . , n`−1

L)

Plaintext Results

Tally
VerifyTally

(Public)

Frontend key Middle key Main Key

s(f) s(m) s and R

1
2v1

eg: (1
2 ,

1
2 , 0)

noise: 1
4

1
4v1

eg: (1
4 ,

1
4 , 0)

noise: 1
16

1
4w1

eg: (0, 0, 0, 1
4 , 0, 0, 0, 0)

noise: 1
16

1
Lw1

eg: (0, 0, 0, 1
L , 0, 0, 0, 0)

noise: O(1
L1.5)

O
ne

-w
ay

bo
ot

st
ra

pp
in

g

1.
Pre

-b
oo

ts
tr
ap

pi
ng

2.
H
om

.
bi

na
ry

ex
pa

ns
io
n

3.
Fin

al
bo

ot
st
ra

pp
in

g

1
2vi

eg: (1
2 , 0,

1
2)

1
2vi

eg: (1
2 , 0,

1
2)

1
4vi

eg: (1
4 , 0,

1
4)

1
4wi

eg: (0, 0, 0, 0, 0, 1
4 , 0, 0)

1
Lwi

eg: (0, 0, 0, 0, 0, 1
L , 0, 0)

1
Lr

(n0

L , n1

L , . . . , n`−1

L)

noise: 1
4L

4. Hom. addition
+

(public operations)

BB
Vote

signed

signed

Figure B.3: Schematic of the protocol - The entire e-voting procedure is schema-
tized in this �gure. In red and green an example: red means encrypted, green means
decrypted.

It is quite natural to suppose that the homomorphic operations involving boot-
strapping are the most costly part. It is for this reason that we do not take into
account other operations. Such homomorphic operations are performed only by the
voters and mainly by the bulletin board.

We imagine the scenario of an election where the number of candidates is upper
bounded by ` = 32 = 25, where 2 trustees are involved, and where the number of
voters is 1.000, 10.000, 100.000 and 1.000.000.

As we use concatenated TLWE encryption with two trustees, we may upper bound
the size of the TLWE samples to 4KBytes and the double the timing for a gate
bootstrapping execution, i.e. 26ms.

153

Appendix B. Application: a homomorphic LWE based e-voting scheme

Voters. Each voter generates his ballot: the voter has to encrypt only 5 bits of
information, corresponding to his vote, with a TLWE encryption, and bootstrap it.
The amount of memory required by the TLWE encryptions is about 40KBytes.
The 5 gate bootstrappings he has to perform, are executed in about 2 seconds
(single-core) on a common laptop.

Bulletin board. The bulletin board has to process every ballot separately,
before adding them homomorphically. A pre-bootstrapping to verify the auxiliary
operation, an initial bootstrapping to reduce the uncontrolled noise and the
homomorphic expansion, need a total of 170 gate bootstrappings, i.e. about 4.5
seconds.

The �nal bootstrapping and the addition can be performed in two ways: by boot-
strapping to a lower level of noise and performing a simple leveled homomorphic
addition between ballots, or by evaluating the gate bootstrapping addition circuit.
In the �rst solution, a bootstrapping with level 2 parameters (as in the circuit boot-
strapping) should be su�cient to perform the homomorphic additions. We could
upper bound the cost of the �nal bootstrapping of each sample to approximately
91ms. The leveled homomorphic addition between all the ballots has negligible ex-
ecution timing compared to the bootstrapping.
The second option consists in using the gate bootstrapping evaluation for the
addition circuit: it can be represented as a full adder circuit with bootstrapped
homomorphic gates.

The following table summarizes the approximate execution timings (for �nal boot-
strapping and homomorphic addition) for both techniques. The timings correspond
to the computation of the �nal encrypted result per candidate with single core
execution. Again, the timings are approximate theoretical predictions: a practical
implementation should be done to verify them in practice. The timings we propose
seem to con�rm our original prediction, stating that a bootstrapping to a lower level
of noise with leveled evaluation of the addition circuit is the best solution.

Gate bootstr. addition Leveled addition

Voters # Gates Timing Timing
1.000 ≈ 6800 ≈ 3 min ≈ 1 min, 30 sec
10.000 ≈ 66900 ≈ 29 min ≈ 16 min
100.000 ≈ 667200 ≈ 4 hours, 50 min ≈ 2 hours, 30 min
1.000.000 ≈ 6667300 ≈ 2 days ≈ 25 hours, 22 min

154

Appendix C

A di�erent cloud solution: MPC

Fully homomorphic encryption is not the only secure private computing solution.
Many other methods deserve to be studied and one of them is Multi-Party Com-
putation (MPC): many parties compute the common result of a function by using
private inputs they do not want to share with the others.
In MPC there are no keys: the data is not encrypted, just securely masked, and the
�nal common result is in clear, contrarily to FHE.

In this chapter we present the results of a paper we wrote on this subject [BCG+18],
recently accepted at the conference Financial Cryptography and Data Security 2018.
The main contribution of the paper is a new MPC protocol that can be used to eval-
uate real valued functions with high numerical precision. This technique is mainly
useful to solve classi�cation problems aiming to detect rare events. The MPC com-
putations include an o�ine phase, for which we model two security scenarios, and
a short online phase, needing at most two rounds of communication to compute the
result. The protocol has been implemented and multiple experiments shown that
our method is e�cient.

C.1 Overview of the work

Privacy-preserving computing allows multiple parties to evaluate a function while
keeping the inputs private and revealing only the output of the function and nothing
else. Recent advances in MPC, homomorphic encryption, and di�erential privacy
made these models practical. An example of such computations, with applications
in medicine and �nance, among others, is the training of supervised models where
the input data comes from distinct secret data sources [GSB+17], [LP00], [MZ17],
[NWI+13] and the evaluation of predictions using these models.
In machine learning classi�cation problems, one trains a model on a given dataset to
predict new inputs, by mapping them into discrete categories. The classical logistic
regression model predicts a class by providing a probability associated with the

155

Appendix C. A di�erent cloud solution: MPC

prediction. The quality of the model can be measured in several ways, the most
common one being the accuracy that indicates the percentage of correctly predicted
answers.
It appears that for a majority of the datasets (e.g., the MNIST database [Datb] of
handwritten digits, or the ARCENE [Data] mass-spectrometry dataset for cancer
detection), the classi�cation achieves very good accuracy after only a few iterations of
the gradient descent using a piecewise-linear approximation of the sigmoid function
sigmo : R→ [0, 1] de�ned as

sigmo(x) =
1

1 + e−x
,

although the current cost function is still far from the minimum value [MZ17]. Other
approximation methods of the sigmoid function have also been proposed in the past.
In [WTK+13], an approximation with low degree polynomials resulted in a more ef-
�cient but less accurate algorithm. Conversely, a higher-degree polynomial approx-
imation applied to deep learning algorithms in [LSS14] yielded more accurate, but
less e�cient algorithms (and thus, less suitable for privacy-preserving computing).
In parallel, approximation solutions for privacy-preserving methods based on
homomorphic encryption [AHPW16], [PAH+17], [GDL+16], [JA16] and di�erential
privacy [ACG+16], [CM08] have been proposed in the context of both classi�cation
algorithms and deep learning.

Nevertheless, accuracy itself is not always a su�cient measure for the quality of the
model, especially if, as mentioned in [GBC16, Page 423], our goal is to detect a rare
event such as a rare disease or a fraudulent �nancial transaction. If, for example, one
out of every one thousand transactions is fraudulent, a naïve model that classi�es
all transactions as honest achieves 99.9% accuracy; yet this model has no predictive
capability. In such cases, measures such as precision, recall and F1-score allow for
better estimating the quality of the model. They bound the rates of false positives or
negatives relative to only the positive events rather than the whole dataset. Precision
is the fraction of true positives, i.e. the number of positive elements that are labeled
as such, among all the elements that are classi�ed as positive by the model. Instead,
recall is the fraction of true positives among all the positive elements. F1-score is
the harmonic mean of previous measures.
The techniques cited above achieve excellent accuracy for most balanced datasets,
but since they rely on a rough approximation of the sigmoid function, they do not
converge to the same model and thus, they provide poor scores on datasets with a
very low acceptance rate.

In this chapter, we show how to regain this numerical precision in MPC, and to reach
the same score as the plaintext regression. Our MPC approach is mostly based on
additive secret shares with precomputed multiplication triples [Bea91]. This means

156

C.1 Overview of the work

that the computation is divided in two phases: an o�ine phase that can be executed
before the data is shared between the players, and an online phase that computes
the actual result. For the o�ine phase, we propose a �rst solution based on a trusted
dealer, and then discuss a protocol where the dealer is honest-but-curious.

Fourier approximation of the sigmoid function. Evaluation of real-valued
functions has been widely used in privacy-preserving computations. For instance,
in order to train linear and logistic regression models, one is required to compute
real-valued functions such as the square root, the exponential, the logarithm, the
sigmoid or the softmax function and use them to solve non-linear optimization
problems. In order to train a logistic regression model, one needs to minimize a
cost function which is expressed in terms of logarithms of the continuous sigmoid
function. This minimum is typically computed via iterative methods such as the
gradient descent. For datasets with low acceptance rate, it is important to get much
closer to the exact minimum in order to obtain a su�ciently precise model. We thus
need to signi�cantly increase the number of iterations (naïve or stochastic gradient
descent) or use faster-converging methods (e.g., IRLS [Bjö96, Section 4.3]). The
latter require a numerical approximation of the sigmoid that is much better than
what was previously achieved in an MPC context, especially when the input data
is not normalized or feature-scaled1. Di�erent approaches have been considered
previously such as approximation by Taylor series around a point (yielding only
good approximation locally at that point), or polynomial approximation (by
e.g., estimating least squares). Although better than the �rst one, this method
is numerically unstable due to the variation of the size of the coe�cients. An
alternative method based on approximation by piecewise-linear functions has been
considered as well. In MPC, this method performs well when used with garbled
circuits instead of secret sharing and masking, but does not provide enough accuracy.

In our case, we approximate the sigmoid using Fourier series, an approach applied
for the �rst time in this context. This method works well as it provides a better
uniform approximation assuming that the function is su�ciently smooth (as is the
case with the sigmoid). In particular, we virtually re-scale and extend the sigmoid
to a periodic function that we approximate with a trigonometric polynomial which
we then evaluate in a stable privacy-preserving manner. To approximate a generic
function with trigonometric polynomials that can be evaluated in MPC, one either
uses the Fourier series of a smooth periodic extension or �nds directly the closest
trigonometric polynomial by the method of least squares for the distance on the half-
period. The �rst approach yields a super-algebraic convergence at best, whereas the
second converges exponentially fast. On the other hand, the �rst one is numerically

1Feature scaling is a method used to bring all the features to a similar scale. If data are not
feature scaled, it could be sometimes complicated to rapidly converge to a global minimum of the
cost function.

157

Appendix C. A di�erent cloud solution: MPC

stable whereas the second one is not (under the standard Fourier basis). In the case
of the sigmoid, we show that one can achieve both properties at the same time.

Floating-point representation and masking. A typical approach to multi-
party computation protocols with masking is to embed �xed-point values into �nite
groups and use uniform masking and secret sharing. Arithmetic circuits can then
be evaluated using, e.g., precomputed multiplication triples and following Beaver's
method [Bea91]. This idea has been successfully used in SPDZ [DPSZ, DPSZ12].
Whereas the method works well on low multiplicative depth circuits like correla-
tions or linear regression [GSB+17], in general, the required group size increases
exponentially with the multiplicative depth. In [MZ17], this exponential growth
is mitigated by a two-party rounding solution, but the technique does not ex-
tend to three or more players where an over�ow in the most signi�cant bits can occur.

In this work, we introduce an alternative sharing scheme, where �xed-point values
are shared directly using (possibly multibit) �oating points, and present a technique
to reduce the share sizes after each multiplication. This technique easily extends to
an arbitrary number of players.

Signi�cant reduction in communication time. We follow the same approach
as in [MZ17] and de�ne dedicated triples for high-level instructions, such as large
matrix multiplications, a system resolution, or an oblivious evaluation of the sigmoid.
This approach is less generic than masking low-level instructions as in SPDZ, but it
allows to reduce the communication and memory requirements by large factors.
Masks and operations are aware of the type of vector or matrix dimensions and
bene�t from the vectorial nature of the high-level operations. For example, multi-
plying two matrices requires a single round of communication instead of up to O(n3)
for coe�cient-wise approaches, depending on the batching quality of the compiler.
Furthermore, masking is de�ned per immutable variable rather than per elementary
operation, so a constant matrix is masked only once during the whole algorithm.
Combined with non-trivial local operations, these triples can be used to achieve
much more than just ring additions or multiplications. In a nutshell, the amount
of communications is reduced as a consequence of reusing the same masks, and
the number of communication rounds is reduced as a consequence of masking di-
rectly matrices and other large structures. Therefore, the total communication time
becomes negligible compared to the computing cost.

New protocol for the honest but curious o�ine phase extendable to n
players. We introduce a new protocol for executing the o�ine phase in the honest-
but-curious model that is easily extendable to a generic number n of players while
remaining e�cient. To achieve this, we use a broadcast channel instead of peer-to-
peer communication which avoids a quadratic explosion in the number of commu-

158

C.2 Secret sharing and MPC: a short background

nications. This is an important contribution, as none of the previous protocols for
n > 3 players in this model are e�cient. In [GSB+17], for instance, the authors
propose a very e�cient algorithm in the trusted dealer model. Yet the execution
time of the oblivious transfer protocol is quite slow.

C.2 Secret sharing and MPC: a short background

Assume that P1, . . . , Pn are distinct computing parties (players). We recall some ba-
sic concepts from multi-party computation that will be needed to better understand
this chapter.

C.2.1 Secret sharing and masking

Let (G, •) be a group and let x ∈ G be a group element. A secret share of x, denoted
by JxK•, is a tuple (x1, . . . , xn) ∈ Gn such that x = x1 • · · · • xn. If (G,+) is abelian,
we call the secret shares x1, . . . , xn additive secret shares.
A secret sharing scheme is computationally secure if for any two elements x, y ∈ G,
strict sub-tuples of shares JxK• or JyK• are indistinguishable. If G admits a uni-
form distribution, an information-theoretic secure secret sharing scheme consists of
drawing x1, . . . , xn−1 uniformly at random and choosing xn = x−1

n−1 • · · · • x−1
1 • x.

When G is not compact, the condition can be relaxed to statistical or computational
indistinguishability.
A closely related notion is the one of group masking. Given a subset X of G, the
goal of masking X is to �nd a distribution D over G such that the distributions of
x • D for x ∈ X are all indistinguishable. Indeed, such distribution can be used to
create a secret share: one can sample λ← D, and give λ−1 to a player and x • λ to
the other. Masking can also be used to evaluate non-linear operations in clear over
masked data, as soon as the result can be privately unmasked via homomorphisms,
as in the Beaver's triple multiplication technique [Bea91].

C.2.2 Arithmetic with secret shares via masking

Computing secret shares for a sum x + y, or a linear combination if (G,+) has
a module structure, can be done non-interactively by each player by adding the
corresponding shares of x and y.
Computing secret shares for a product is more challenging. One way to do that is
to use Beaver's idea, based on precomputed and secret shared multiplicative triples.
From a general point of view, let (G1,+), (G2,+) and (G3,+) be three abelian
groups and let π : G1 × G2 → G3 be a bilinear map. Given additive secret shares
JxK+ and JyK+ for two elements x ∈ G1 and y ∈ G2, we would like to compute
secret shares for the element π(x, y) ∈ G3. With Beaver's method, the players must
employ precomputed single-use random triples (JλK+, JµK+, Jπ(λ, µ)K+) for λ ∈ G1

159

Appendix C. A di�erent cloud solution: MPC

and µ ∈ G2, and then use them to mask and reveal a = x + λ and b = y + µ. The
players then compute secret shares for π(x, y) as follows:

• Player 1 computes z1 = π(a, b)− π(a, µ1)− π(λ1, b) + (π(λ, µ))1;

• Player i (for i = 2, . . . , n) computes zi = −π(a, µi)− π(λi, b) + (π(λ, µ))i.

The computed z1, . . . , zn are the additive shares of π(x, y). A given λ (or µ respec-
tively) can be used to mask only one variable, so one triple must be precomputed for
each multiplication during the o�ine phase, i.e. before the data is made available to
the players. Instantiated with the appropriate groups, this abstract scheme allows to
evaluate a product in a ring, but also a vector dot product, a matrix-vector product,
or a matrix-matrix product.

C.2.3 MPC evaluation of real-valued continuous functions

For various applications, such as logistic regression, we need to compute continuous
real-valued functions over secret shared data. For non-linear functions (e.g. expo-
nential, log, power, cos, sin, sigmoid, etc.), di�erent methods are proposed in the
literature.
A straightforward approach consists of implementing a full �oating point arith-
metic framework, and to compile a data-oblivious algorithm that evaluates the func-
tion over �oats. This is for instance what Sharemind [BLW08] and SPDZ [DPSZ,
DPSZ12] use. However, these two generic methods lead to prohibitive running times
if the �oating point function has to be evaluated millions of times.
The second approach is to replace the function with an approximation that is easier
to compute. As instance, [MZ17] uses garbled circuits to evaluate �xed point com-
parisons and absolute values, then it replaces the sigmoid function in the logistic
regression with a piecewise-linear function. Otherwise, [LSS14] approximates the sig-
moid with a polynomial of �xed degree and evaluates that polynomial with Horner's
method, thus requiring a number of rounds of communications proportional to the
degree.
Another method, that is close to how SPDZ computes inverses in a �nite �eld,
is based on polynomial evaluation via multiplicative masking: using a precomputed
triple of the form (JλK+, Jλ−1K+, . . . , Jλ−pK+), players can evaluate P (x) =

∑p
i=0 apx

p

by revealing u = xλ and outputting the linear combination
∑p

i=0 aiu
iJλ−iK+.

Multiplicative masking, however, involves some leakage: in �nite �elds, it reveals
whether x is null. The situation gets even worse in �nite rings where the multiplica-
tive orbit of x is disclosed (for instance, the rank would be revealed in a ring of
matrices), and over R, the order of magnitude of x would be revealed.
For real-valued polynomials, the leakage could be mitigated by translating and
rescaling the variable x so that it falls in the range [1, 2). Yet, in general, the coef-
�cients of the polynomials that approximate the translated function explode, thus
causing serious numerical issues.

160

C.3 Statistical Masking and Secret Share Reduction

C.2.4 Full threshold honest-but-curious protocol

Since our goal is to emphasize new functionalities, such as e�cient evaluation of real-
valued continuous functions and good quality logistic regression, we often consider
a scenario where all players follow the protocol without introducing any errors.
The players may, however, record the whole transaction history and try to learn
illegitimate information about the data. During the online phase, the security model
imposes that any collusion of at most n− 1 players out of n cannot distinguish any
semantic property of the data beyond the aggregated result that is legitimately and
explicitly revealed.
To achieve this, Beaver triples can be generated and distributed by a single entity
called the trusted dealer. In this case, no coalition of at most n − 1 players should
get any computational advantage on the plaintext triple information. However, the
dealer himself knows the plaintext triples, and hence the whole data, which only
makes sense on some computation outsourcing use-cases.
It is for this reason that we give an alternative honest-but-curious (or semi-honest)
protocol to generate the same triples, involving this time bi-directional communi-
cations between the players and the dealer. In this case, the dealer and the players
collaborate during the o�ine phase in order to generate the precomputed material,
but none of them have access to the whole plaintext triples. This makes sense as
long as the dealer does not collude with any player, and at least one player does not
collude with the other players. We leave the design of actively secure protocols for
future work.

C.3 Statistical Masking and Secret Share Reduc-

tion

In this section, we present our masking technique for �xed-point arithmetic and
provide an algorithm for the MPC evaluation of real-valued continuous functions.
In particular, we show that to achieve p bits of numerical precision in MPC, it
su�ces to have p+ 2τ -bit �oating points where τ is a �xed security parameter.

Our secret shares are real numbers and we would like to mask these shares using
�oating point numbers. Yet, as there is no uniform distribution on R, no additive
masking distribution over reals can perfectly hide the arbitrary inputs. In the case
when the secret shares belong to some known range of numerical precision, it is
possible to carefully choose a masking distribution, depending on the precision
range, so that the masked value computationally leaks no information about the
input. A distribution with su�ciently large standard deviation could do the job:
we refer to this type of masking as �statistical masking�. In practice, we choose a
normal distribution with standard deviation σ = 240.

161

Appendix C. A di�erent cloud solution: MPC

On the other hand, by using such masking, we observe that the sizes of the secret
shares increase every time we evaluate the multiplication via Beaver's technique.
We take care of this problem by introducing a technique that allows to reduce the
secret share sizes by discarding the most signi�cant bits of each secret share. This
is possible thanks to the fact that the sum of the secret shares is still much smaller
than their size.

C.3.1 Fixed point, �oating point and interval precision

Let B be an integer and p be a non negative integer. We de�ne the class of �xed
point numbers of exponent B and numerical precision p as

C(B, p) = {x ∈ 2B−pZ | |x| ≤ 2B}.

Each class C(B, p) is �nite, and contains 2p+1 + 1 numbers. They could be rescaled
and stored as (p+ 2)-bit integers.
Alternatively, a number x ∈ C(B, p) can also be represented by its �oating point
value, provided that the �oating point representation has at least p bits of man-
tissa. In this case, addition and multiplication of numbers across classes of the same
numerical precision are natively mapped to �oating point arithmetic. The main
arithmetic operations on these classes are:

• Lossless Addition: C(B1, p1) × C(B2, p2) → C(B, p) where B =
max(B1, B2) + 1 and p = B −min(B1 − p1, B2 − p2);

• Lossless Multiplication: C(B1, p1)×C(B2, p2)→ C(B, p) where B = B1+B2

and p = p1 + p2;

• Rounding: C(B1, p1)→ C(B, p), that maps x to its nearest element in 2B−pZ.

Lossless operations require p to increase exponentially in the multiplication depth,
whereas �xed precision operations maintain p constant by applying a �nal rounding.
Finally, note that the exponent B should be incremented to store the result of an
addition. B is a user-de�ned parameter in �xed point arithmetic: if the user chooses
to keep B unchanged, any result |x| > 2B will not be representable in the output
domain. In this case, we say that there is a plaintext over�ow.

C.3.2 Floating point representation

Given a security parameter τ , we say that a set S is a τ -secure masking set for a class
C(B, p) if the following distinguishability game cannot be won with advantage ≥ 2−τ .

The adversary chooses two plaintexts m0,m1 in C(B, p), a challenger picks b ∈ {0, 1}
and α ∈ S uniformly at random, and sends c = mb + α to the adversary. The

162

C.3 Statistical Masking and Secret Share Reduction

adversary has to guess b.

Note that increasing such distinguishing advantage from 2−τ to ≈ 1/2 would require
to give at least 2τ samples to the attacker, so τ = 40 is su�cient in practice.

Lemma C.3.1. The class C(B, p, τ) = {α ∈ 2B−pZ | |α| ≤ 2B+τ} is a τ -secure
masking set for C(B, p)

Proof. Observe that the number of elements in C(B, p, τ) is 2p+τ+1 + 1. If a, b ∈
C(B, p) and U is the uniform distribution on C(B, p, τ), the statistical distance be-
tween a+U and b+U is (b−a)·2p−B/#C(B, p, τ) ≤ 2−τ . This distance upper-bounds
any computational advantage.

As the class C(B, p, τ) = C(B+ τ, p+ τ) �ts in �oating point numbers of (p+ τ + 1)-
bits of mantissa, they can be used to securely mask �xed point numbers with
numerical precision p. By extension, all additive shares for C(B, p) will be taken in
C(B, p, τ).

We now analyze what happens if we use Beaver's protocol to multiply two plaintexts
x ∈ C(B1, p) and y ∈ C(B2, p). The masked values x+ λ and y + µ are bounded by
2B1+τ and 2B2+τ respectively. Since the mask λ is also bounded by 2B1+τ , and µ by
2B2+τ , the computed secret shares of x · y will be bounded by 2B1+B2+2τ .
So the lossless multiplication sends C(B1, p, τ) × C(B2, p, τ) → C(B, 2p, 2τ) where
B = B1 + B2, instead of C(B, p, τ). Reducing p is just a matter of rounding, and
it is done automatically by the �oating point representation. However, we still need
a method to reduce τ , so that the output secret shares are bounded by 2B+τ . We
describe our method in the next section.

C.3.3 Secret share reduction algorithm

The algorithm we propose depends on two auxiliary parameters:

• The cuto�, de�ned as η = B + τ so that 2η is the desired bound in absolute
value;

• An auxiliary parameter M = 2κ, for a small number κ we will specify below,
larger than the number of players.

The main idea is that the initial share contains large components z1, . . . , zn that
sum up to the small secret shared value z. Additionally, the most signi�cant bits of
the share beyond the cuto� position (say MSB(zi) = bzi/2ηe) do not contain any
information on the data, and are all safe to reveal.
We also know that the MSB of the sum of the shares is null, so the sum of the
MSB of the shares is very small. The share reduction algorithm simply computes

163

Appendix C. A di�erent cloud solution: MPC

this sum, and redistributes it evenly among the players. Since the sum is guar-
anteed to be small, the computation is done moduloM rather than on large integers.

More precisely, using the cuto� parameter η, for i = 1, . . . , n, player i writes his
secret share zi of z as zi = ui + 2ηvi, with vi ∈ Z and ui ∈ [−2η−1, 2η−1). Then,
he broadcasts vi mod M , so that each player computes the sum. The individual
shares can optionally be re-randomized using a precomputed share JνK+, with ν = 0
mod M . Since

∑
vi is guaranteed to be between −M/2 andM/2, it can be recovered

from its representation mod M .
Thus, each player locally updates its share as ui + 2η(

∑
vi)/n, which have by

construction the same sum as the original shares, but are bounded by 2η.

Algorithm 14 details our method for reducing the size of the secret shares. This
procedure is used inside the classical MPC multiplication involving �oating points.

Algorithm 14 Mask reduction.

Input: JzK+ and one triple JνK+, with ν = 0 mod M .
Output: Secret shares for the same value z with smaller absolute values of the

shares.
1: Each player Pi computes ui ∈ [−2η−1, 2η−1) and vi ∈ Z, such that zi = ui + 2ηvi.
2: Each player Pi broadcasts vi + νi mod M to other players.
3: The players compute w = 1

n
(
∑n

i=1(vi + νi) mod M).
4: Each player Pi computes the new share of z as z′i = ui + 2ηw

C.4 Fourier Approximation

In order to regain numerical precision in the MPC evaluation of real valued
functions, we decided to rely on Fourier theory, which allows to approximate certain
periodic functions with trigonometric polynomials.

In this section, we show how to evaluate trigonometric polynomials in MPC. Then
we describe our approximation technique for the evaluation of the sigmoid function.

C.4.1 Evaluation of trigonometric polynomials

Recall that a complex trigonometric polynomial is a �nite sum of the form t(x) =∑P
m=−P cme

imx where cm ∈ C is equal to am + ibm, with am, bm ∈ R. Each trigono-
metric polynomial is a periodic function with period 2π. If c−m = cm for all m ∈ Z,
then t is real-valued, and corresponds to the more familiar cosine decomposition
t(x) = a0 + 2

∑P
m=1(am cos(mx)− bm sin(mx)).

164

C.4 Fourier Approximation

Here, we describe how to evaluate trigonometric polynomials in an MPC context,
and explain why it is better than regular polynomials.

We suppose that, for all m, the coe�cients am and bm of t are publicly accessible
and they are 0 ≤ am, bm ≤ 1. As t is 2π periodic, we can evaluate it on inputs
modulo 2π. Remark that as R mod 2π admits a uniform distribution, we can use a
uniform masking: this method completely �xes the leakage issues that were related
to the evaluation of classical polynomials via multiplicative masking. On the other
hand, the output of the evaluation is still in R: in this case we continue using the
statistical masking described in previous sections.
The inputs are secretly shared and additively masked: for sake of clarity, to distin-
guish the classical addition over reals from the addition modulo 2π, we temporarily
denote this latter by ⊕. In the same way, we denote the additive secret shares with
respect to the addition modulo 2π by J·K⊕. Then, the transition from J·K+ to J·K⊕
can be achieved by trivially reducing the shares modulo 2π.
Then, a way to evaluate t on a secret shared input JxK+ = (x1, . . . , xn) is to convert
JxK+ to JxK⊕ and additively mask it with a shared masking JλK⊕, then reveal x⊕ λ
and rewrite our target JeimxK+ as eim(x⊕λ) ·Jeim(−λ)K+. Indeed, since x⊕λ is revealed,
the coe�cient eim(x⊕λ) can be computed in clear. Overall, the whole trigonometric
polynomial t can be evaluated in a single round of communication, given a precom-
puted triple such as (JλK⊕, Je−iλK+, . . . , Je−iλP K+), that we call Fourier triple in the
following, and thanks to the fact that x⊕ λ has been revealed.
Also, we notice that to work with complex numbers of absolute value 1 makes the
method numerically stable, compared to power functions in regular polynomials. It
is for this reason that the evaluation of trigonometric polynomials is a better solution
in our context.

C.4.2 Approximating the sigmoid function

If one is interested in uniformly approximating a non-periodic function f , with
trigonometric polynomials on a given interval, e.g. [−π/2, π/2], one cannot simply
use the Fourier coe�cients. Indeed, even if the function is analytic, its Fourier series
need not converge uniformly near the end-points.
A way to remedy to this problem is to look for a periodic extension of the function
to a larger interval and look at the convergence properties of the Fourier series for
that extension. An alternative approach is to use the least-square approximations,
i.e. to search for this non-periodic function on a larger interval (say [−π, π]), such
that the restriction to the original interval of the L2-distance between the origi-
nal function and the approximation is minimized. The �rst technique is interesting
because numerically stable, the second one instead converges exponentially fast.
In this section we only focus on how we approximate the sigmoid function. In the
case of the sigmoid, we obtain numerical stability and fast convergence at the same

165

Appendix C. A di�erent cloud solution: MPC

time. We just give the idea of our technique: for more details on the subject and
on the techniques used to approximate a non-periodic function, we refer to our
paper [BCG+18].

Sigmoid function. We restrict to the case of the sigmoid function over the
interval [−B/2, B/2] for some B > 0. We can rescale the variable to approximate
g(x) = sigmo(Bx/π) over [−π/2, π/2]. If we extend g by anti-periodicity (odd-even)
to the interval [π/2, 3π/2] with the mirror condition g(x) = g(π − x), we obtain a
continuous 2π-periodic piecewise C1 function. By Dirichlet's global theorem, the
Fourier serie of g converges uniformly over R, so for all ε > 0, there exists a degree
N and a trigonometric polynomial gN such that ‖gN − g‖∞ ≤ ε.

To compute sigmo(t) over secret shared t, we �rst apply the a�ne change of variable
(which is easy to evaluate in MPC), to get the corresponding x ∈ [−π/2, π/2]. Then,
we evaluate the trigonometric polynomial gN(x) using a Fourier triple. This method
is su�cient to get 24 bits of precision with a polynomial of only 10 terms,
However asymptotically, the convergence rate is only in Θ(N−2) due to discontinu-
ities in the derivative of g. In other words, approximating g with λ bits of precision
requires to evaluate a trigonometric polynomial of degree 2λ/2. Luckily, in the special
case of the sigmoid function, we can make this degree polynomial by explicitly con-
structing a 2π-periodic analytic function that is exponentially close to the rescaled
sigmoid on the whole interval [−π, π] (not the half interval). Besides, the geometric
decay of the coe�cients of the trigonometric polynomial ensures perfect numerical
stability.

C.5 Honest but curious model

In the previous sections, we de�ned the shares of multiplication, power and Fourier
triples, but we did not explain how to generate them. Of course, a single trusted
dealer (TD) approved by all players could generate and distribute all the necessary
shares to the players. Since the trusted dealer knows all the masks, and thus all
the data, the TD model is only legitimate for few computation outsourcing scenarios.

We now explain how to generate the same triples e�ciently in the more traditional
honest but curious (HBC) model. To do so, we keep an external entity, called again
the dealer, who participates in an interactive protocol to generate the triples, but
sees only masked information. Since the triples in both the HBC and TD models
are similar, the online phase is unchanged. Notice that in this HBC model, even if
the dealer does not have access to the secret shares, he still has more power than
the players. In fact, if one of the players wants to gain information on the secret
data, he has to collude with all other players, whereas the dealer would need to

166

C.5 Honest but curious model

collaborate with just one of them.

In what follows, we suppose that, during the o�ine phase, a private channel exists
between each player and the dealer. In the case of an HBC dealer, we also assume
that an additional private broadcast channel (a channel to which the dealer has
no access) exists between all the players. Figure C.1 summarizes the idea for both
models.

P1

P2

P3

Dealer

P1

P2

P3 Dealer

Figure C.1: Communication channels in the o�ine phase - The �gure represents
the communication channels in both the TD model (left) and in the HBC model
(right) used during the o�ine phase. In the �rst model, the dealer sends the triples
to each player via a private channel. In the second model, the players have access
to a private broadcast channel, shared between all of them and each player shares
an additional private channel with the dealer. The private channels are denoted with
dashed lines. The �gure represents 3 players, but each model can be extended to an
arbitrary number n of players.

Afterwards, the online phase only requires a public broadcast channel between the
players, for both the TD and the HBC models, as shown in Figure C.2. In practice,
because of the underlying encryption, private channels (e.g., SSL connections)
have a lower throughput (generally ≈ 20MB/s) than public channels (plain TCP
connections, generally from 100 to 1000MB/s between cloud instances).

The majority of HBC protocols proposed in the literature present a scenario with
only 2 players. In [CDN15] and [AFL+16], the authors describe e�cient HBC pro-
tocols that can be used to perform a fast MPC multiplication in a model with three
players. The two schemes assume that the parties follow correctly the protocol and
that two players do not collude. The scheme proposed in [CDN15] is very complex
to scale for more than three parties, while the protocol in [AFL+16] can be extended
to a generic number of players, but requires a quadratic number of private channels
(one for every pair of players).
We propose a di�erent protocol for generating the multiplicative triples in the HBC
scenario, that is e�cient for any arbitrary number n of players. In our scheme,
the dealer evaluates the non-linear parts in the triple generation, over the masked

167

Appendix C. A di�erent cloud solution: MPC

P1

P2

P3

Figure C.2: Communication channels in the online phase - The �gure represents
the communication channels (the same type for both the HBC and the TD model)
used during the online phase. The players send and receive masked values via a pub-
lic broadcast channel (public channels are denoted with plain lines). Their number,
limited to 3 in the example, can easily be extended to a generic number n of players.

data produced by the players, then he distributes the masked shares. The mask
is common to all players, and it is produced thanks to the private broadcast
channel that they share. Finally, each player produces his triple by unmasking the
precomputed data received from the dealer.

To give more details on the generation of the triples, we detail three algorithms that
can be used in the HBC model:

• Algorithm 15: used for the generation of multiplicative Beaver's triples.

• Algorithm 16: used for the generation of the triples needed in the computation
of the power function.

• Algorithm 17: used for the generation of the triples needed in the evaluation
of a trigonometric polynomial.

All the algorithms follow the same footstep: the dealer and the players collaborate
for the generation of triples and none of them is supposed to have access to the whole
information. The players generate their secret shares (of λ and µ in Algorithm 15,
and of λ only in Algorithms 16 and 17), that each one keeps secret. They also
generate secret shares of a common mask, that they share between each other via
the broadcast channel, but which remains secret to the dealer. The player then
mask their secret shares with the common mask and sends them to the dealer, who
evaluates the non-linear parts (product in Algorithm 15, power in Algorithms 16 and
trigonometric function in Algorithm 17). The dealer generates new additive shares
for the result and sends these values back to each player via the private channel.
This way, the players don't know each other's shares. Finally, the players, who know
the common mask, can independently unmask their secret shares, and obtain their
�nal share of the triple, which is therefore unknown to the dealer.

168

C.6 Application to Logistic Regression

Algorithm 15 Honest but curious triples generation for multiplication.

Output: Shares (JλK, JµK, JzK) with z = λµ.
1: Each player Pi generates ai, bi, λi, µi (from the according distribution).
2: Each player Pi shares with all other players ai, bi.
3: Each player computes a = a1 + · · ·+ an and b = b1 + · · ·+ bn.
4: Each player Pi sends to the dealer ai + λi and bi + µi.
5: The dealer computes a+ λ, b+ µ and w = (a+ λ)(b+ µ).
6: The dealer creates JwK+ and sends wi to player Pi, for i = 1, . . . , n.
7: Player P1 computes z1 = w1 − ab− aµ1 − bλ1.
8: Player i for i = 2, . . . n computes zi = wi − aµi − bλi.

Algorithm 16 Honest but curious triples generation for the power function.

Output: Shares JλK and Jλ−αK.
1: Each player Pi generates λi, ai (from the according distribution).
2: Each player Pi shares with all other players ai.
3: Each player computes a = a1 + · · ·+ an.
4: Each player Pi generates zi in a way that

∑n
i=1 zi = 0.

5: Each player Pi sends to the dealer zi + aλi.
6: The dealer computes aλ and w = (aλ)−α.
7: The dealer creates JwK+ and sends wi to player Pi, for i = 1, . . . , n.
8: Each player Pi right-multiplies wi with aα to obtain (λ−α)i.

C.6 Application to Logistic Regression

In a classi�cation problem one is given a data set, also called a training set, that we
will represent here by a matrix X ∈ MN,k(R), and a training vector y ∈ {0, 1}N .
The data set consists of N input vectors of k features each, and the coordinate yi of
the vector y corresponds to the class (0 or 1) to which the i-th element of the data
set belongs to. Formally, the goal is to determine a function hθ : Rk → {0, 1} that
takes as input a vector x, containing k features, and which outputs hθ(x) predicting
reasonably well y, the corresponding output value.

In logistic regression typically one uses hypothesis functions hθ : Rk+1 → [0, 1] of
the form

hθ(x) = sigmo(θTx),

where θTx =
∑k

i=0 θixi ∈ R and x0 = 1. The vector θ, also called model, is the
parameter that needs to be determined. In order to do this, a convex cost function
Cx,y(θ) measuring the quality of the model at a data point (x, y) is de�ned as

Cx,y(θ) = −y log hθ(x)− (1− y) log(1− hθ(x)).

The cost for the whole dataset is thus computed as
∑N

i=1 Cxi,yi(θ). The overall goal

169

Appendix C. A di�erent cloud solution: MPC

Algorithm 17 Honest but curious triples generation for a trigonometric polynomial.

Output: Shares (JλK, Jeim1λK+, . . . , JeimNλK+).
1: Each player Pi generates λi, ai (uniformly modulo 2π)
2: Each player Pi broadcasts ai to all other players.
3: Each player computes a = a1 + · · ·+ an mod 2π.
4: Each player Pi sends to the dealer λi + ai mod 2π.
5: The dealer computes λ+ a mod 2π and w(1) = eim1(λ+a), . . . , w(N) = eimN (λ+a)

6: The dealer creates Jw(1)K+, . . . , Jw(N)K+ and sends w(1)
i , . . . , w

(N)
i to player Pi.

7: Each player Pi multiplies each w
(j)
i by e−imja to get (eimjλ)i, for all j ∈ [1, N].

is to determine a model θ whose cost function is as close as possible to 0. A common
method to achieve this is the so called gradient descent which consists of constantly
updating the model θ as

θ := θ − α∇Cx,y(θ),

where ∇Cx,y(θ) is the gradient of the cost function and α > 0 is a constant called
the learning rate.
Choosing the optimal α depends largely on the quality of the dataset: if α is
too large, the method may diverge, and if α is too small, a very large number of
iterations are needed to reach the minimum. Unfortunately, tuning this parameter
requires either to reveal information on the data, or to have access to a public fake
training set, which is not always feasible in private MPC computations. This step is
often silently ignored in the literature. Similarly, preprocessing techniques such as
feature scaling, or orthogonalization techniques can improve the dataset, and allow
to increase the learning rate signi�cantly. But again, these techniques cannot easily
be implemented when the input data is shared, and when correlation information
should remain private.

In this work, we choose to implement the IRLS (Iteratively Reweighted Least
Squares) method [Bjö96, Section 4.3], which does not require feature scaling, works
with learning rate 1, and converges in much less iterations, provided that we have
enough �oating point precision. In this case, the model is updated as:

θ := θ −H(Cx,y(θ))
−1 · ∇Cx,y(θ),

where H(Cx,y(θ)) is the Hessian matrix of the cost function in θ.

C.6.1 Implementation and Experimental Results

We implemented an MPC proof-of-concept of the logistic regression algorithm in
C++. We represented numbers in C(B, p) classes with 128-bit �oating point num-
bers, and set the masking security parameter to τ = 40 bits. Since a 128-bit number
has 113 bits of precision, and the multiplication algorithm needs 2τ = 80 bits of

170

C.6 Application to Logistic Regression

masking, we still have 33 bits of precision that we can freely use throughout the
computation. Since our benchmarks are performed on a regular x86_64 CPU, 128-
bit �oating point arithmetic is emulated using GCC's quadmath library. Additional
speed-ups could be achieved on more recent hardware that natively support these
operations, such as the IBM's next POWER9 processor.
In our proof of concept, our main focus was to improve the running time, the �oat-
ing point precision, and the communication complexity of the online phase, so we
implemented the o�ine phase only for the TD scenario, leaving the HBC dealer
variant as a future work.

Algorithm 18 Model training: Train(X,y)

Input: A dataset X ∈MN,k(R) and a training vector y ∈ {0, 1}N
Output: The model θ ∈ Rk that minimizes CostX,y(θ)
1: Precompute Prodsi = XT

i Xi for i ∈ [0, N − 1]
2: θ ← [0, . . . , 0] ∈ Rk

3: for iter = 1 to IRLS_ITERS do . In practice IRLS_ITERS = 8
4: a← X · θ
5: p← [sigmo(a0), . . . , sigmo(aN−1)]
6: pmp← [p0(1− p0), . . . , pN−1(1− pN−1)]
7: grad← XT (p− y)
8: H ← pmp · Prods
9: θ = θ −H−1 · grad
10: end for
11: return θ
Model-training algorithm with the IRLS method. The algorithm is explained over the
plaintext. In the MPC instantiation, each player gets a secret share for each variable.
Every product is evaluated using Beaver's triples, and the sigmoid using the Fourier
method.

We implemented the logistic regression model training described in Algorithm 18.
Each iteration of the main loop evaluates the gradient (grad) and the Hessian (H) of
the cost function at the current position θ, and solves the Hessian system (line 7) to
�nd the next position. Most of the computation steps are bilinear on large matrices
or vectors, and each of them is evaluated via a Beaver's triple in a single round of
communication.
In step 5 the sigmoid functions are approximated (in parallel) by an odd trigono-
metric polynomial of degree 23, which provides 20 bits of precision on the whole
interval. We therefore use a vector of Fourier triples, as described in Section C.4.
The Hessian system (step 9) is masked by two (uniformly random) orthonormal
matrices on the left and the right, and revealed, so the resolution can be done in
plaintext. Although this method reveals the norm of the gradient, which is pre-
dictable anyway, it hides its direction entirely, which is enough to ensure that the

171

Appendix C. A di�erent cloud solution: MPC

�nal model remains private.
Finally, since the input data is not necessarily feature-scaled, it is essential to start
from the zero position (step 2) and not a random position, because the �rst one is
guaranteed to be in the IRLS convergence domain.

To build the MPC evaluation of Algorithm 18, we wrote a small compiler to pre-
process this high level listing, unroll all for loops, and turn it into a sequence of
instructions on immutable variables (which are read-only once they are a�ected).
More importantly, the compiler associates a single additive mask λU to each of these
immutable variables U .
This solves two important problems that we saw in the previous sections:

• The masking information for huge matrices that are re-used throughout the
algorithm are transmitted only once during the whole protocol (this optimiza-
tion already appears in [MZ17], and in our case, it has a huge impact for the
constant input matrix, and their precomputed products, which are re-used in
all IRLS iterations).

• It mitigates the attack that would retrieve information by averaging its masked
distribution, because an attacker never gets two samples of the same distribu-
tion. This justi�es the choice of 40 bits of security for masking.

During the o�ine phase, the trusted dealer generates one random mask value for
each immutable variable, and secret shares these masks. For all matrix-vector or
matrix-matrix products between any two immutable variables U and V (coming from
Lines 1, 4, 6, 7 and 8 of Algorithm 18), the trusted dealer also generates a speci�c
multiplication triple using the masks λU of U and λV of V . More precisely, he gen-
erates and distributes additive shares for λU · λV as well as integer vectors/matrices
of the same dimensions as the product for the share-reduction phase. These integer
coe�cients are taken modulo 256 for e�ciency reasons.

Practical results We implemented all the described algorithms and we tested
our code for two and three parties, using cloud instances on both the AWS and
the Azure platforms, having Xeon E5-2666 v3 processors. In our application each
instance communicates via its public IP address. Furthermore, we use the zeroMQ
library to handle low-level communications between the players (peer-to-peer,
broadcast, central nodes etc...).

We tested our method by �xing the number of IRLS iterations to 8, which is enough
to reach a perfect convergence for most datasets, and we experimentally veri�ed that
the MPC computation outputs the same model as the one with plaintext iterations.
We also tested di�erent sizes for the dataset, from 10.000 to 150.000 points, having
8, 12 or 20 features each. As instance, for a dataset of 150.000 points, the total

172

C.6 Application to Logistic Regression

running time of the online phase ranges from 1 to 5 minutes. This running time is
mostly due to the use of emulated quad-�oat arithmetic, and this MPC computation
is no more than 20 times slower than the plaintext logistic regression on the same
datasets, if we implement it using the same 128-bit �oats.

More interestingly, we see that the overall size of the totality of the triples and
the amount of online communications are small: for instance, a logistic regression
on 150000 points with 8 features requires only 756MBytes of triples per player,
and out of it, only 205MBytes of data are broadcast during the online phase per
player. This is due to the fact that a Fourier triple is much larger than the value
that is masked and exchanged. Because of this, the communication time is in-
signi�cant compared to the whole running time, even with regular WAN bandwidth.

Finally, when the input data is guaranteed to be feature-scaled, we can improve the
whole time, memory and communication complexities by about 30% by performing
3 classical gradient descent iterations followed by 5 IRLS iterations instead of 8
IRLS iterations.

We have tested our platform on datasets that were provided by the banking industry.
For privacy reasons, these datasets cannot be revealed. However, the behaviour
described in this paper can be reproduced by generating random data sets, for
instance, with Gaussian distribution, setting the acceptance threshold to 0.5%, and
adding some noise by randomly swapping a few labels.

173

Appendix C. A di�erent cloud solution: MPC

174

Notations

Abbreviations

• BDD: bounded distance decoding.

• BK: bootstrapping key.

• Dec: decryption algorithm.

• Enc: encryption algorithm.

• Eval: evaluation algorithm.

• FHE: fully homomorphic encryption.

• GCD: great common divisor.

• GLWE: general learning with errors problem/encryption.

• GSW: Gentry, Sahai and Waters (known as GSW) scheme/encryption.

• HBC: honest but curious.

• HE: homomorphic encryption.

• i.e.: (Latin abbreviation of id est) means �that is�.

• IND-CCA1: indistinguishability under chosen ciphertext attack.

• IND-CCA2: indistinguishability under adaptive chosen ciphertext attack.

• IND-CPA: indistinguishability under chosen plaintext attack.

• IND-CVA: indistinguishability under (chosen) ciphertext veri�cation attack.

• KeyGen: key generation algorithm.

• KS: key-switching key.

• LHE: leveled homomorphic encryption.

• LSB: least signi�cant bit.

175

Notations

• LWE: learning with errors problem/encryption.

• MPC: multi-party computation.

• MSB: most signi�cant bit.

• NIZK: non-interactive zero-knowledge.

• pk: public key.

• PK: public key (matrix).

• PPT: probabilistic polynomial time.

• RingGSW: ring GSW scheme/encryption.

• RingLWE: ring learning with errors problem/encryption.

• SHE: somewhat homomorphic encryption.

• SIS: short integer solution.

• sk: secret key.

• tCB: time per circuit bootstrapping.

• TD: trusted dealer.

• tGB: time per gate bootstrapping.

• TGSW: torus GSW scheme/encryption.

• tKS: time per key switching.

• TLWE: torus learning with errors problem/encryption.

• TRGSW: torus ring GSW scheme/encryption.

• TRLWE: torus ring learning with errors problem/encryption.

• tXP: time per external product.

Mathematical and algorithmic notations

• · : depending on the context, it represents the classical multiplication, the poly-
nomial multiplication, an external product or the scalar product (sometimes
omitted).

• × : represents an internal product.

• | . . . | : absolute value.

176

• [. . . | . . .] or (. . . | . . .) : concatenation.
• ‖. . .‖ : norm.

• Ja, bK : interval including all the integers between a and b.

• a← A : a has been sampled from A.

• B : {0, 1}.
• BN [X] : polynomials in ZN [X] with binary coe�cients.

• C : complex numbers.

• D : distibution.

• dist : distance.

• E : expectation.

• Ep : vectors of size p with entries in E.

• Idm : the identity matrix of size m×m.

• Mp,q(E) : p× q-size matrices with elements in E.

• f(x) = O(g(x)) : ∃k > 0 such that |f(x)| ≤ kg(x) asymptotically.

• f(x) = Õ(g(x)) : ∃k > 0 such that f(x) = O(g(x) logk(g(x))).

• f(x) = Θ(g(x)) : ∃k1, k2 > 0 such that k1g(x) ≤ |f(x)| ≤ k2g(x) asymptoti-
cally.

• f(x) = Ω(g(x)) : ∃k > 0 such that |f(x)| ≥ kg(x) asymptotically.

• poly(. . .) : polynomial time.

• R : real numbers.

• sigmo(. . .): sigmoid function.

• T : the real torus R/Z, i.e. real numbers modulo 1.

• TN [X] : R[X]/(XN + 1) mod 1.

• U : uniform distribution.

• Var : variance.

• X : probability distribution.

• Z : integer numbers.

• ZN [X] : Z[X]/(XN + 1).

177

Notations

178

List of publications

[BCG+18] Christina Boura, Ilaria Chillotti, Nicolas Gama, Dimitar Jetchev,
Stanislav Peceny, and Alexander Petric. High-precision privacy-
preserving real-valued function evaluation. 2018.

[CGG16] Ilaria Chillotti, Nicolas Gama, and Louis Goubin. Attacking fhe-
based applications by software fault injections. IACR Cryptology ePrint
Archive, 2016:1164, 2016.

[CGGI16a] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. Faster fully homomorphic encryption: Bootstrapping in less
than 0.1 seconds. In Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, pages 3�33, 2016.

[CGGI16b] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. A homomorphic LWE based e-voting scheme. In Post-
Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
Fukuoka, Japan, February 24-26, 2016, Proceedings, pages 245�265,
2016.

[CGGI16c] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: tfhe repository. https://github.com/tfhe/tfhe, 2016.

[CGGI16d] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: Fast fully homomorphic encryption library.
https://tfhe.github.io/tfhe/, August 2016.

[CGGI17a] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. Faster packed homomorphic operations and e�cient circuit
bootstrapping for TFHE. In Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I, pages 377�408, 2017.

179

LIST OF PUBLICATIONS

[CGGI17b] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Ma-
lika Izabachène. TFHE: experimental-tfhe repository.
https://github.com/tfhe/experimental-tfhe, 2017.

180

Bibliography

[ABD16] Martin R. Albrecht, Shi Bai, and Léo Ducas. A sub�eld lattice attack
on overstretched NTRU assumptions - cryptanalysis of some FHE and
graded encoding schemes. In Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part I, pages 153�178, 2016.

[ACD+17] Martin R Albrecht, Benjamin R Curtis, Amit Deo, Alex Davidson,
Rachel Player, Eamonn Postlethwaite, Fernando Virdia, and Thomas
Wunderer. Estimate all the {LWE, NTRU} schemes. https://estimate-
all-the-lwe-ntru-schemes.github.io/docs, 2017.

[ACF+15] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitz-
patrick, and Ludovic Perret. On the complexity of the BKW algorithm
on LWE. Des. Codes Cryptography, 74(2):325�354, 2015.

[ACG+16] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan,
Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with di�er-
ential privacy. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October
24-28, 2016, pages 308�318, 2016.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast
cryptographic primitives and circular-secure encryption based on hard
learning problems. In Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2009. Proceedings, pages 595�618, 2009.

[AD17] Martin R. Albrecht and Amit Deo. Large modulus ring-lwe ≥ module-
lwe. In Advances in Cryptology - ASIACRYPT 2017 - 23rd Interna-
tional Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Pro-
ceedings, Part I, pages 267�296, 2017.

[AdMP] Ben Adida, Olivier de Marne�e, and Olivier Pereira. Helios: Trust the
vote. https://heliosvoting.org/.

181

BIBLIOGRAPHY

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key exchange - A new hope. In 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016., pages 327�343, 2016.

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma
Ohara. High-throughput semi-honest secure three-party computation
with an honest majority. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016, pages 805�817, 2016.

[AHPW16] Yoshinori Aono, Takuya Hayashi, Le Trieu Phong, and Lihua Wang.
Privacy-preserving logistic regression with distributed data sources via
homomorphic encryption. IEICE Transactions, 99-D(8):2079�2089,
2016.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In Proceedings of the Twenty-Eighth Annual ACM Sympo-
sium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996, pages 99�108, 1996.

[Alb17] Martin R. Albrecht. On dual lattice attacks against small-secret LWE
and parameter choices in helib and SEAL. In Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part II, pages 103�129, 2017.

[aMR17] Cryptography Research Group at Microsoft Research. Seal - sim-
ple encrypted arithmetic library. https://www.microsoft.com/en-
us/research/project/simple-encrypted-arithmetic-library/, 2017.

[AP14] Jacob Alperin-Sheri� and Chris Peikert. Faster bootstrapping with
polynomial error. In Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2014, Proceedings, Part I, pages 297�314, 2014.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of learning with errors. J. Mathematical Cryptology, 9(3):169�
203, 2015.

[BBL17] Daniel Benarroch, Zvika Brakerski, and Tancrède Lepoint. FHE over
the integers: Decomposed and batched in the post-quantum regime.
In Public-Key Cryptography - PKC 2017 - 20th IACR International
Conference on Practice and Theory in Public-Key Cryptography, Am-
sterdam, The Netherlands, March 28-31, 2017, Proceedings, Part II,
pages 271�301, 2017.

182

BIBLIOGRAPHY

[BCG+15] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira,
and Bogdan Warinschi. Sok: A comprehensive analysis of game-based
ballot privacy de�nitions. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 499�
516, 2015.

[BCG+18] Christina Boura, Ilaria Chillotti, Nicolas Gama, Dimitar Jetchev,
Stanislav Peceny, and Alexander Petric. High-precision privacy-
preserving real-valued function evaluation. 2018.

[Bea91] Donald Beaver. E�cient multiparty protocols using circuit randomiza-
tion. In Advances in Cryptology - CRYPTO '91, 11th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August
11-15, 1991, Proceedings, pages 420�432, 1991.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,
Amit Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility
of obfuscating programs. In Advances in Cryptology - CRYPTO 2001,
21st Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 19-23, 2001, Proceedings, pages 1�18, 2001.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas
on ciphertexts. In TCC, volume 3378, pages 325�341. Springer, 2005.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)
fully homomorphic encryption without bootstrapping. In Innovations
in Theoretical Computer Science 2012, Cambridge, MA, USA, January
8-10, 2012, pages 309�325, 2012.

[BGW00] Adam L. Buchsbaum, Ra�aele Giancarlo, and Je�ery Westbrook. On
the determinization of weighted �nite automata. SIAM J. Comput.,
30(5):1502�1531, 2000.

[Bjö96] Åke Björck. Numerical methods for least square problems. SIAM, 1996.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learn-
ing, the parity problem, and the statistical query model. J. ACM,
50(4):506�519, 2003.

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols
based on the RSA encryption standard PKCS #1. In Advances in
Cryptology - CRYPTO '98, 18th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 23-27, 1998, Proceed-
ings, pages 1�12, 1998.

183

BIBLIOGRAPHY

[BLLN13] JoppeW. Bos, Kristin E. Lauter, Jake Loftus, and Michael Naehrig. Im-
proved security for a ring-based fully homomorphic encryption scheme.
In Cryptography and Coding - 14th IMA International Conference,
IMACC 2013, Oxford, UK, December 17-19, 2013. Proceedings, pages
45�64, 2013.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé. Classical hardness of learning with errors. In Sympo-
sium on Theory of Computing Conference, STOC'13, Palo Alto, CA,
USA, June 1-4, 2013, pages 575�584, 2013.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A frame-
work for fast privacy-preserving computations. In Computer Security -
ESORICS 2008, 13th European Symposium on Research in Computer
Security, Málaga, Spain, October 6-8, 2008. Proceedings, pages 192�
206, 2008.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic
multi-key FHE with short ciphertexts. In Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I,
pages 190�213, 2016.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In
Advances in Cryptology - EUROCRYPT '94, Workshop on the Theory
and Application of Cryptographic Techniques, Perugia, Italy, May 9-12,
1994, Proceedings, pages 92�111, 1994.

[BR15] Jean-François Biasse and Luis Ruiz. FHEW with e�cient multibit
bootstrapping. In Progress in Cryptology - LATINCRYPT 2015 - 4th
International Conference on Cryptology and Information Security in
Latin America, Guadalajara, Mexico, August 23-26, 2015, Proceedings,
pages 119�135, 2015.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical gapsvp. IACR Cryptology ePrint Archive,
2012:78, 2012.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. E�cient fully homomor-
phic encryption from (standard) LWE. Electronic Colloquium on Com-
putational Complexity (ECCC), 18:109, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic en-
cryption from ring-lwe and security for key dependent messages. In
Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology

184

BIBLIOGRAPHY

Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceed-
ings, pages 505�524, 2011.

[BV14a] Zvika Brakerski and Vinod Vaikuntanathan. E�cient fully homomor-
phic encryption from (standard) LWE. SIAM J. Comput.,
43(2):831�871, 2014.

[BV14b] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as
secure as PKE. In Innovations in Theoretical Computer Science,
ITCS'14, Princeton, NJ, USA, January 12-14, 2014, pages 1�12, 2014.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint,
María Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ci-
phers: A practical solution for e�cient homomorphic-ciphertext com-
pression. In Fast Software Encryption - 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected
Papers, pages 313�333, 2016.

[CCK+13] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee,
Tancrède Lepoint, Mehdi Tibouchi, and Aaram Yun. Batch fully ho-
momorphic encryption over the integers. In Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings, pages 315�335, 2013.

[CDN15] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure Mul-
tiparty Computation and Secret Sharing. Cambridge University Press,
2015.

[CDS15] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Armadillo: A
compilation chain for privacy preserving applications. In Proceedings
of the 3rd International Workshop on Security in Cloud Computing,
SCC@ASIACCS '15, Singapore, Republic of Singapore, April 14, 2015,
pages 13�19, 2015.

[CDW17] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stick-
elberger class relations and application to ideal-svp. In Advances in
Cryptology - EUROCRYPT 2017 - 36th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part I, pages 324�
348, 2017.

[CEQ16] CryptoExperts, INP ENSEEIHT, and Quarkslab. N�lib - an ntt-based
fast lattice library. https://github.com/quarkslab/NFLlib, 2016.

185

BIBLIOGRAPHY

[CF13] Dario Catalano and Dario Fiore. Practical homomorphic macs for arith-
metic circuits. In Advances in Cryptology - EUROCRYPT 2013, 32nd
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceed-
ings, pages 336�352, 2013.

[CFGN14] Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo.
Generalizing homomorphic macs for arithmetic circuits. In Public-Key
Cryptography - PKC 2014 - 17th International Conference on Prac-
tice and Theory in Public-Key Cryptography, Buenos Aires, Argentina,
March 26-28, 2014. Proceedings, pages 538�555, 2014.

[CFW14] Dario Catalano, Dario Fiore, and BogdanWarinschi. Homomorphic sig-
natures with e�cient veri�cation for polynomial functions. In Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I,
pages 371�389, 2014.

[CGG16] Ilaria Chillotti, Nicolas Gama, and Louis Goubin. Attacking fhe-based
applications by software fault injections. IACR Cryptology ePrint
Archive, 2016:1164, 2016.

[CGGI14] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Iz-
abachène. Election veri�ability for helios under weaker trust assump-
tions. In Computer Security - ESORICS 2014 - 19th European Sympo-
sium on Research in Computer Security, Wroclaw, Poland, September
7-11, 2014. Proceedings, Part II, pages 327�344, 2014.

[CGGI16a] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. Faster fully homomorphic encryption: Bootstrapping in less
than 0.1 seconds. In Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, pages 3�33, 2016.

[CGGI16b] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. A homomorphic LWE based e-voting scheme. In Post-
Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
Fukuoka, Japan, February 24-26, 2016, Proceedings, pages 245�265,
2016.

[CGGI16c] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: tfhe repository. https://github.com/tfhe/tfhe, 2016.

186

BIBLIOGRAPHY

[CGGI16d] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: Fast fully homomorphic encryption library.
https://tfhe.github.io/tfhe/, August 2016.

[CGGI17a] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. Faster packed homomorphic operations and e�cient circuit
bootstrapping for TFHE. In Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I, pages 377�408, 2017.

[CGGI17b] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Ma-
lika Izabachène. TFHE: experimental-tfhe repository.
https://github.com/tfhe/experimental-tfhe, 2017.

[Cha01] Bernard Chazelle. The pcp theorem. In Bourbaki Seminar, volume 895,
2001.

[CHK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-
soo Song. Bootstrapping for approximate homomorphic encryption. In
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part
I, pages 360�384, 2018.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Ho-
momorphic encryption for arithmetic of approximate numbers. In Ad-
vances in Cryptology - ASIACRYPT 2017 - 23rd International Con-
ference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I,
pages 409�437, 2017.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-
invariant fully homomorphic encryption over the integers. In Public
Key Cryptography, volume 8383, pages 311�328, 2014.

[CM08] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logis-
tic regression. In Advances in Neural Information Processing Systems
21, Proceedings of the Twenty-Second Annual Conference on Neural In-
formation Processing Systems, Vancouver, British Columbia, Canada,
December 8-11, 2008, pages 289�296, 2008.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi
Tibouchi. Fully homomorphic encryption over the integers with shorter
public keys. In Crypto, volume 6841, pages 487�504. Springer, 2011.

187

BIBLIOGRAPHY

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice secu-
rity estimates. In Advances in Cryptology - ASIACRYPT 2011 - 17th
International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011.
Proceedings, pages 1�20, 2011.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public
key compression and modulus switching for fully homomorphic encryp-
tion over the integers. In Advances in Cryptology - EUROCRYPT 2012
- 31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Pro-
ceedings, pages 446�464, 2012.

[CRRV17] Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and Vinod
Vaikuntanathan. Chosen-ciphertext secure fully homomorphic encryp-
tion. In Public-Key Cryptography - PKC 2017 - 20th IACR Interna-
tional Conference on Practice and Theory in Public-Key Cryptography,
Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part
II, pages 213�240, 2017.

[CS11] Véronique Cortier and Ben Smyth. Attacking and �xing helios: An
analysis of ballot secrecy. In Proceedings of the 24th IEEE Computer
Security Foundations Symposium, CSF 2011, Cernay-la-Ville, France,
27-29 June, 2011, pages 297�311, 2011.

[CS15] Jung Hee Cheon and Damien Stehlé. Fully homomophic encryption
over the integers revisited. In Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, So�a, Bulgaria, April 26-30,
2015, Proceedings, Part I, pages 513�536, 2015.

[CS16] Ana Costache and Nigel P. Smart. Which ring based somewhat homo-
morphic encryption scheme is best? In Topics in Cryptology - CT-RSA
2016 - The Cryptographers' Track at the RSA Conference 2016, San
Francisco, CA, USA, February 29 - March 4, 2016, Proceedings, pages
325�340, 2016.

[CT14] Massimo Chenal and Qiang Tang. On key recovery attacks against
existing somewhat homomorphic encryption schemes. In Progress in
Cryptology - LATINCRYPT 2014 - Third International Conference on
Cryptology and Information Security in Latin America, Florianópolis,
Brazil, September 17-19, 2014, Revised Selected Papers, pages 239�258,
2014.

188

BIBLIOGRAPHY

[Dai16] Wei Dai. cuhe - homomorphic and fast.
https://github.com/vernamlab/cuHE, 2016.

[Data] Dataset. Arcene Data Set. https://archive.ics.uci.edu/ml/datasets/Arcene.

[Datb] Dataset. MNIST Database. http://yann.lecun.com/exdb/mnist/.

[DDA13] Angsuman Das, Sabyasachi Dutta, and Avishek Adhikari. Indistin-
guishability against chosen ciphertext veri�cation attack revisited: The
complete picture. In Provable Security - 7th International Conference,
ProvSec 2013, Melaka, Malaysia, October 23-25, 2013. Proceedings,
pages 104�120, 2013.

[DG09] Manfred Droste and Paul Gastin. Weighted automata and weighted
logics. Handbook of Weighted Automata, EATCS Monographs in The-
oretical Computer Science, pages 175�211, 2009.

[DH76] Whit�eld Di�e and Martin E. Hellman. New directions in cryptogra-
phy. IEEE Trans. Information Theory, 22(6):644�654, 1976.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomor-
phic encryption in less than a second. In Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, So�a, Bulgaria,
April 26-30, 2015, Proceedings, Part I, pages 617�640, 2015.

[DM17] Leo Ducas and Daniele Micciancio. FHEW: A fully homomorphic en-
cryption library. https://github.com/lducas/FHEW, 2017.

[dPLNS17] Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor
Seiler. Practical quantum-safe voting from lattices. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, pages 1565�1581, 2017.

[DPSZ] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. SPDZ Software.
https://www.cs.bris.ac.uk/Research/CryptographySecurity/SPDZ/.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption. In
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceed-
ings, pages 643�662, 2012.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE transactions on information theory,
31(4):469�472, 1985.

189

BIBLIOGRAPHY

[FJ05] Matteo Frigo and Steven G. Johnson. The design and implementation
of FFTW3. Proceedings of the IEEE, 93(2):216�231, 2005. Special issue
on �Program Generation, Optimization, and Platform Adaptation�.

[FMNP16] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin.
Multi-key homomorphic authenticators. In Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part II, pages 499�530, 2016.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully ho-
momorphic encryption. IACR Cryptology ePrint Archive, 2012:144,
2012.

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learn-
ing. Adaptive computation and machine learning. MIT Press, 2016.

[GCG] Stéphane Glondu, Véronique Cortier, and Pierrick Gaudry. Belenios:
Veri�able online voting system. http://www.belenios.org/.

[GDL+16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In
Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 201�
210, 2016.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
169�178, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In 54th Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 40�49, 2013.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In Advances
in Cryptology - EUROCRYPT 2013, 32nd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, pages 626�645, 2013.

190

BIBLIOGRAPHY

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evalua-
tion of the AES circuit. In Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2012. Proceedings, pages 850�867, 2012.

[GINX14] Nicolas Gama, Malika Izabachène, Phong Q. Nguyen, and Xiang Xie.
Structural lattice reduction: Generalized worst-case to average-case re-
ductions. IACR Cryptology ePrint Archive, 2014:283, 2014.

[GN08a] Nicolas Gama and Phong Q. Nguyen. Finding short lattice vec-
tors within mordell's inequality. In Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 207�216, 2008.

[GN08b] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction.
In Advances in Cryptology - EUROCRYPT 2008, 27th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, pages 31�
51, 2008.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumera-
tion using extreme pruning. In Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, French Riviera, May 30 - June 3,
2010. Proceedings, pages 257�278, 2010.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Proceedings of
the 40th Annual ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, May 17-20, 2008, pages 197�206, 2008.

[GSB+17] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova,
Jack Doerner, Samee Zahur, and David Evans. Privacy-preserving
distributed linear regression on high-dimensional data. PoPETs,
2017(4):345�364, 2017.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. IACR Cryptology ePrint Archive, 2013:340, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and HoeteckWee. Attribute-
based encryption for circuits. J. ACM, 62(6):45:1�45:33, 2015.

[HAO15] Ryo Hiromasa, Masayuki Abe, and Tatsuaki Okamoto. Packing mes-
sages and optimizing bootstrapping in GSW-FHE. In Public-Key Cryp-

191

BIBLIOGRAPHY

tography - PKC 2015 - 18th IACR International Conference on Prac-
tice and Theory in Public-Key Cryptography, Gaithersburg, MD, USA,
March 30 - April 1, 2015, Proceedings, pages 699�715, 2015.

[HEA17] Heaan. https://github.com/kimandrik/HEAAN, 2017.

[HG01] Nick Howgrave-Graham. Approximate integer common divisors. In
CaLC, volume 1, pages 51�66. Springer, 2001.

[HGS99] Chris Hall, Ian Goldberg, and Bruce Schneier. Reaction attacks against
several public-key cryptosystems. In Information and Communication
Security, Second International Conference, ICICS'99, Sydney, Aus-
tralia, November 9-11, 1999, Proceedings, pages 2�12, 1999.

[HPS98] Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-
based public key cryptosystem. In Algorithmic Number Theory, Third
International Symposium, ANTS-III, Portland, Oregon, USA, June 21-
25, 1998, Proceedings, pages 267�288, 1998.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing block-
wise lattice algorithms using dynamical systems. In Advances in Cryp-
tology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 447�464,
2011.

[HS14] Shai Halevi and Victor Shoup. Algorithms in helib. In Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I,
pages 554�571, 2014.

[HS17] S. Halevi and Igor V. Shoup. Helib - an implementation of homomor-
phic encryption. https://github.com/shaih/HElib/, 2017.

[HSJ09] ZhenYu Hu, FuChun Sun, and JianChun Jiang. Ciphertext veri�cation
security of symmetric encryption schemes. Science in China Series F:
Information Sciences, 52(9):1617�1631, 2009.

[JA16] Angela Jäschke and Frederik Armknecht. Accelerating homomorphic
computations on rational numbers. In Applied Cryptography and Net-
work Security - 14th International Conference, ACNS 2016, Guildford,
UK, June 19-22, 2016. Proceedings, pages 405�423, 2016.

[JCJ10] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant
electronic elections. In Towards Trustworthy Elections, New Directions
in Electronic Voting, pages 37�63, 2010.

192

BIBLIOGRAPHY

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve
digital signature algorithm (ecdsa). International Journal of Informa-
tion Security, 1(1):36�63, 2001.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and re-
lated lattice problems. In Proceedings of the �fteenth annual ACM
symposium on Theory of computing, pages 193�206. ACM, 1983.

[Kra93] David W Kravitz. Digital signature algorithm, July 27 1993. US Patent
5,231,668.

[LGM16a] Zengpeng Li, Steven D. Galbraith, and Chunguang Ma. Prevent-
ing adaptive key recovery attacks on the gentry-sahai-waters leveled
homomorphic encryption scheme. IACR Cryptology ePrint Archive,
2016:1146, 2016.

[LGM16b] Zengpeng Li, Steven D. Galbraith, and Chunguang Ma. Preventing
adaptive key recovery attacks on the GSW levelled homomorphic en-
cryption scheme. In Provable Security - 10th International Confer-
ence, ProvSec 2016, Nanjing, China, November 10-11, 2016, Proceed-
ings, pages 373�383, 2016.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Fac-
toring polynomials with rational coe�cients. Mathematische Annalen,
261(4):515�534, 1982.

[LMSV11] Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren.
On cca-secure somewhat homomorphic encryption. In Selected Areas
in Cryptography - 18th International Workshop, SAC 2011, Toronto,
ON, Canada, August 11-12, 2011, Revised Selected Papers, pages 55�
72, 2011.

[LN13] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An
update. In Topics in Cryptology - CT-RSA 2013 - The Cryptographers'
Track at the RSA Conference 2013, San Francisco,CA, USA, February
25-March 1, 2013. Proceedings, pages 293�309, 2013.

[LN14] Tancrede Lepoint and Michael Naehrig. A comparison of the homo-
morphic encryption schemes fv and yashe. In International Conference
on Cryptology in Africa, pages 318�335. Springer, 2014.

[Lol17] λ ◦ λ (lol). https://github.com/cpeikert/Lol, 2017.

[LP00] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In
Advances in Cryptology - CRYPTO 2000, 20th Annual International

193

BIBLIOGRAPHY

Cryptology Conference, Santa Barbara, California, USA, August 20-
24, 2000, Proceedings, pages 36�54, 2000.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 1�
23. Springer, 2010.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reduc-
tions for module lattices. Designs, Codes and Cryptography, 75(3):565�
599, 2015.

[LSS14] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computa-
tional e�ciency of training neural networks. In Advances in Neural
Information Processing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, pages 855�863, 2014.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
�y multiparty computation on the cloud via multikey fully homomor-
phic encryption. In Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May 19 -
22, 2012, pages 1219�1234, 2012.

[Mic18] Daniele Micciancio. On the hardness of learning with errors with binary
secrets. 2018.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and
Claude Carlet. Towards stream ciphers for e�cient FHE with low-
noise ciphertexts. In Advances in Cryptology - EUROCRYPT 2016 -
35th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Pro-
ceedings, Part I, pages 311�343, 2016.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings, pages 700�718, 2012.

[MW16] Daniele Micciancio and Michael Walter. Practical, predictable lattice
basis reduction. In Advances in Cryptology - EUROCRYPT 2016 -
35th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Pro-
ceedings, Part I, pages 820�849, 2016.

194

BIBLIOGRAPHY

[MZ17] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on Se-
curity and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017,
pages 19�38, 2017.

[Nay] Project Nayuki: Fast fourier transform in x86 assembly.
https://www.nayuki.io/page/fast-fourier-transform-in-x86-assembly.

[NK15] Koji Nuida and Kaoru Kurosawa. (batch) fully homomorphic encryp-
tion over integers for non-binary message spaces. In Advances in Cryp-
tology - EUROCRYPT 2015 - 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, So�a,
Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 537�555, 2015.

[NLV11] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can
homomorphic encryption be practical? In Proceedings of the 3rd ACM
Cloud Computing Security Workshop, CCSW 2011, Chicago, IL, USA,
October 21, 2011, pages 113�124, 2011.

[NWI+13] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan
Boneh, and Nina Taft. Privacy-preserving ridge regression on hundreds
of millions of records. In 2013 IEEE Symposium on Security and Pri-
vacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 334�348,
2013.

[PAH+17] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and
Shiho Moriai. Privacy-preserving deep learning: Revisited and en-
hanced. In Applications and Techniques in Information Security - 8th
International Conference, ATIS 2017, Auckland, New Zealand, July 6-
7, 2017, Proceedings, pages 100�110, 2017.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in Cryptology - EUROCRYPT '99, In-
ternational Conference on the Theory and Application of Cryptographic
Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, pages
223�238, 1999.

[PAL17] Palisade - lattice cryptography library.
https://git.njit.edu/palisade/PALISADE, 2017.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical veri�able computation. In 2013 IEEE Symposium
on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22,
2013, pages 238�252, 2013.

195

BIBLIOGRAPHY

[RAD78] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data
banks and privacy homomorphisms. Foundations of secure computa-
tion, 4(11):169�180, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages
84�93, 2005.

[Rot10] Ron Rothblum. Homomorphic encryption: from private-key to public-
key. Electronic Colloquium on Computational Complexity (ECCC),
17:146, 2010.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communi-
cations of the ACM, 21(2):120�126, 1978.

[SE94] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Im-
proved practical algorithms and solving subset sum problems. Mathe-
matical programming, 66(1-3):181�199, 1994.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM J. Comput.,
26(5):1484�1509, 1997.

[Smy12] Ben Smyth. Replay attacks that violate ballot secrecy in helios. IACR
Cryptology ePrint Archive, 2012:185, 2012.

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-
case problems over ideal lattices. In Advances in Cryptology - EURO-
CRYPT 2011 - 30th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tallinn, Estonia, May
15-19, 2011. Proceedings, pages 27�47, 2011.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa.
E�cient public key encryption based on ideal lattices. In Advances
in Cryptology - ASIACRYPT 2009, 15th International Conference on
the Theory and Application of Cryptology and Information Security,
Tokyo, Japan, December 6-10, 2009. Proceedings, pages 617�635, 2009.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryp-
tion with relatively small key and ciphertext sizes. In Public Key Cryp-
tography - PKC 2010, 13th International Conference on Practice and
Theory in Public Key Cryptography, Paris, France, May 26-28, 2010.
Proceedings, pages 420�443, 2010.

196

BIBLIOGRAPHY

[SV14] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD
operations. Des. Codes Cryptography, 71(1):57�81, 2014.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. Fully homomorphic encryption over the integers. In Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 24�43. Springer, 2010.

[WTK+13] Shuang Wu, Tadanori Teruya, Junpei Kawamoto, Jun Sakuma, and
Hiroaki Kikuchi. Privacy-preservation for stochastic gradient descent
application to secure logistic regression. volume 27, pages 1�4, 2013.

[YJ00] Sung-Ming Yen and Marc Joye. Checking before output may not be
enough against fault-based cryptanalysis. IEEE Trans. Computers,
49(9):967�970, 2000.

[ZPS11] Zhenfei Zhang, Thomas Plantard, and Willy Susilo. Reaction attack on
outsourced computing with fully homomorphic encryption schemes. In
Information Security and Cryptology - ICISC 2011 - 14th International
Conference, Seoul, Korea, November 30 - December 2, 2011. Revised
Selected Papers, pages 419�436, 2011.

[ZPS12] Zhenfei Zhang, Thomas Plantard, and Willy Susilo. On the CCA-1
security of somewhat homomorphic encryption over the integers. In
Information Security Practice and Experience - 8th International Con-
ference, ISPEC 2012, Hangzhou, China, April 9-12, 2012. Proceedings,
pages 353�368, 2012.

197

	Introduction
	State of the art on Homomorphic Encryption
	Gentry and DGHV: the first generation
	Approximate-GCD and the DGHV scheme
	Gentry's bootstrapping

	Learning with errors: the second and third generation
	Second Generation: BGV
	Third Generation: GSW

	LWE and GSW over the Torus
	Preliminary notions
	Modules
	Probability distributions
	Distance and Norms

	The Learning With Errors problem revisited
	TLWE
	TGSW
	Products
	CMux gate

	TFHE: building blocks and leveled constructions
	Building blocks for TFHE
	Key Switching revisited
	Sample Extraction.
	Blind Rotate

	Leveled constructions in TFHE
	Arbitrary functions and Look-Up Tables
	Deterministic automata
	Bit Sequence Representation

	Bootstrapped TFHE
	Gate bootstrapping (TLWE-to-TLWE)
	Circuit bootstrapping (TLWE-to-TRGSW)

	Security estimates, practical results and implementation
	Semantic security
	Security analysis

	TFHE: Fast Fully Homomorphic Encryption over the Torus
	Concrete Parameters
	Gate bootstrapping Parameters.
	Circuit Bootstrapping

	Time comparison between different techniques
	Comparison between TFHE and the other schemes

	Conclusion
	Appendices
	Cloud security of homomorphic encryption
	Safe-errors and reaction attacks in the cloud
	Attacking the data
	Attacking the algorithm

	Attacking the bootstrapping principle
	Trans-ciphering
	Bootstrapping

	Countermeasures

	Application: a homomorphic LWE based e-voting scheme
	E-voting scheme
	More homomorphic building blocks
	Publicly verifiable decryption for LWE
	Concatenated TLWE with distributed decryption

	Detailed Description of our E-voting Protocol
	Setup phase
	Voting phase
	Tallying phase

	Practical estimates

	A different cloud solution: MPC
	Overview of the work
	Secret sharing and MPC: a short background
	Secret sharing and masking
	Arithmetic with secret shares via masking
	MPC evaluation of real-valued continuous functions
	Full threshold honest-but-curious protocol

	Statistical Masking and Secret Share Reduction
	Fixed point, floating point and interval precision
	Floating point representation
	Secret share reduction algorithm

	Fourier Approximation
	Evaluation of trigonometric polynomials
	Approximating the sigmoid function

	Honest but curious model
	Application to Logistic Regression
	Implementation and Experimental Results

	Notations
	List of publications
	Bibliography

